transpose_mkldnn_op.cc 7.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/malloc.h"
18
#include "paddle/fluid/operators/transpose_op.h"
19 20 21 22 23
#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace paddle {
namespace operators {

24
using Tensor = phi::DenseTensor;
25 26 27 28 29 30
using framework::DataLayout;

template <typename T>
class TransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
31 32
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()),
                      true,
33 34
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL Transpose must use CPUPlace"));
35 36
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
37 38 39 40 41 42 43
    const auto& dnnl_engine = dev_ctx.GetEngine();
    std::vector<int> transpose_axis = ctx.Attr<std::vector<int>>("axis");
    int ndims = transpose_axis.size();
    auto* x = ctx.Input<Tensor>("X");
    auto* out = ctx.Output<Tensor>("Out");

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
44 45

    if (ndims == 1) {
46 47
      framework::TensorCopy(*x, x->place(), out);
      out->set_mem_desc(x->mem_desc());
48 49 50
      return;
    }

51
    auto x_vec_dims = phi::vectorize(x->dims());
52

53 54 55 56 57
    framework::proto::VarType::Type x_paddle_type =
        framework::TransToProtoVarType(x->dtype());
    dnnl::memory::data_type x_type = framework::ToMKLDNNDataType(x_paddle_type);
    platform::ReorderMKLDNNHandler reorder_handler(
        x_vec_dims, x_paddle_type, x_type, dnnl_engine);
58

59 60
    auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
        x->mem_desc(), platform::to_void_cast(x->data<T>()));
61

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
    auto dst_md =
        dnnl::memory::desc(x_vec_dims,
                           x->mem_desc().data_type(),
                           platform::GetPlainMKLDNNFormat(x_vec_dims.size()));
    // a trick is used here to fake transpose of out_md, so later it will be
    // "untransposed", leaving output data in plain format tag
    auto dst_strides = FakeTranposeStrides(dst_md, transpose_axis);

    dst_md =
        dnnl::memory::desc(x_vec_dims, x->mem_desc().data_type(), dst_strides);
    auto dst_data =
        out->mutable_data(ctx.GetPlace(), x->type(), dst_md.get_size());

    auto reorder_dst_memory_p =
        std::make_shared<dnnl::memory>(dst_md, dnnl_engine, dst_data);

    auto reorder_p = reorder_handler.AcquireReorder(reorder_dst_memory_p,
                                                    reorder_src_memory_p);

    reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);
A
Adam 已提交
82
    astream.wait();
83

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    out->set_mem_desc(reorder_dst_memory_p->get_desc().permute_axes(
        TransposeToPermuteAxis(transpose_axis)));
  }

 private:
  // it is needed because oneDNN's permute axis understand axes order in
  // different way PaddlePaddle's transpose
  std::vector<int> TransposeToPermuteAxis(
      const std::vector<int>& transpose_axis) const {
    std::vector<int> permute_axis(transpose_axis.size());

    for (size_t i = 0; i < transpose_axis.size(); ++i) {
      permute_axis[transpose_axis[i]] = i;
    }
    return permute_axis;
  }

  std::vector<int64_t> FakeTranposeStrides(
      const dnnl::memory::desc& dst_md,
      const std::vector<int>& transpose_axis) const {
    std::vector<int64_t> fake_strides(transpose_axis.size());
    auto dims = dst_md.dims();
    int total_stride = 1;
    int ndims = static_cast<int>(dims.size());

    for (int i = ndims - 1; i >= 0; --i) {
      fake_strides[transpose_axis[i]] = total_stride;
      total_stride *= dims[transpose_axis[i]];
    }

    return fake_strides;
115 116 117
  }
};

118 119 120 121
template <typename T>
class TransposeMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
122 123
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()),
                      true,
124 125
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL TransposeGrad must use CPUPlace"));
126 127 128 129

    const auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    if (!dx) return;
130 131
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
132 133 134 135 136 137
    const auto& dnnl_engine = dev_ctx.GetEngine();
    std::vector<int> transpose_axis = ctx.Attr<std::vector<int>>("axis");

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();

    int ndims = transpose_axis.size();
138
    if (ndims == 1) {
139 140
      framework::TensorCopy(*dout, dout->place(), dx);
      dx->set_mem_desc(dout->mem_desc());
141 142 143
      return;
    }

144
    auto dout_vec_dims = phi::vectorize(dout->dims());
145

146 147 148 149
    framework::proto::VarType::Type dout_paddle_type =
        framework::TransToProtoVarType(dout->dtype());
    dnnl::memory::data_type dout_type =
        framework::ToMKLDNNDataType(dout_paddle_type);
150

151 152
    platform::ReorderMKLDNNHandler reorder_handler(
        dout_vec_dims, dout_paddle_type, dout_type, dnnl_engine);
153

154 155
    auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
        dout->mem_desc(), platform::to_void_cast(dout->data<T>()));
156

157 158
    auto reorder_dst_memory_p =
        reorder_handler.AcquireDstMemory(dx, dout->mem_desc(), ctx.GetPlace());
159

160 161 162 163
    auto reorder_p = reorder_handler.AcquireReorder(reorder_dst_memory_p,
                                                    reorder_src_memory_p);

    reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);
A
Adam 已提交
164
    astream.wait();
165 166
    dx->set_mem_desc(
        reorder_dst_memory_p->get_desc().permute_axes(transpose_axis));
167 168 169
  }
};

170 171 172 173 174
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

175 176 177 178
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(transpose2,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    FP32,
179 180 181
                                    ops::kTransposeMKLDNNFP32,
                                    ops::TransposeMKLDNNOpKernel<float>);

182 183 184 185
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(transpose2,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    U8,
186 187 188
                                    ops::kTransposeMKLDNNINT8,
                                    ops::TransposeMKLDNNOpKernel<uint8_t>);

189 190 191 192
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(transpose2,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    S8,
193 194 195
                                    ops::kTransposeMKLDNNINT8,
                                    ops::TransposeMKLDNNOpKernel<int8_t>);

196
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
197 198 199 200
    transpose2,
    MKLDNN,
    ::paddle::platform::CPUPlace,
    BF16,
201 202 203
    ops::kTransposeMKLDNNFP32,
    ops::TransposeMKLDNNOpKernel<paddle::platform::bfloat16>);

204 205 206
REGISTER_OP_KERNEL(transpose,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
207
                   ops::TransposeMKLDNNOpKernel<float>);
208

209 210 211
REGISTER_OP_KERNEL(transpose_grad,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
212
                   ops::TransposeMKLDNNGradOpKernel<float>);