Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
19746835
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
19746835
编写于
10月 03, 2022
作者:
J
jakpiase
提交者:
GitHub
10月 03, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
OneDNN md-in-tensor refactoring: Added support for md in transpose (#46620)
* added transpose * CI fix * fix for transpose * fix after review
上级
a579e523
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
97 addition
and
110 deletion
+97
-110
paddle/fluid/operators/mkldnn/transpose_mkldnn_op.cc
paddle/fluid/operators/mkldnn/transpose_mkldnn_op.cc
+97
-110
未找到文件。
paddle/fluid/operators/mkldnn/transpose_mkldnn_op.cc
浏览文件 @
19746835
...
...
@@ -24,70 +24,6 @@ namespace operators {
using
Tensor
=
phi
::
DenseTensor
;
using
framework
::
DataLayout
;
template
<
typename
T
>
class
TransposeMKLDNNHandler
{
public:
TransposeMKLDNNHandler
(
std
::
vector
<
int64_t
>&
dims
,
// NOLINT
std
::
vector
<
int
>&
axis
,
// NOLINT
dnnl
::
engine
engine
)
:
dims_
(
dims
),
axis_
(
axis
),
logical_axis_
(
dims
.
size
(),
0
),
engine_
(
engine
)
{}
std
::
shared_ptr
<
dnnl
::
memory
>
AcquireSrcMemory
(
const
MKLDNNMemoryFormat
&
fmt
,
void
*
ptr
)
{
// Make memory descriptor using input format, unless it
// cannot be trusted (nchw) then make up memory fmt manually
for
(
size_t
i
=
0
;
i
<
this
->
logical_axis_
.
size
();
++
i
)
{
this
->
logical_axis_
[
i
]
=
i
;
}
auto
src_md
=
fmt
!=
MKLDNNMemoryFormat
::
nchw
?
platform
::
MKLDNNMemDesc
(
dims_
,
platform
::
MKLDNNGetDataType
<
T
>
(),
fmt
)
:
Axis2MemoryDesc
(
dims_
,
logical_axis_
);
return
std
::
make_shared
<
dnnl
::
memory
>
(
src_md
,
engine_
,
ptr
);
}
std
::
shared_ptr
<
dnnl
::
memory
>
AcquireDstMemory
(
phi
::
DenseTensor
*
output
,
platform
::
Place
place
)
{
auto
dst_md
=
Axis2MemoryDesc
(
dims_
,
axis_
);
auto
dst_data
=
output
->
mutable_data
<
T
>
(
place
,
dst_md
.
get_size
());
return
std
::
make_shared
<
dnnl
::
memory
>
(
dst_md
,
engine_
,
dst_data
);
}
std
::
shared_ptr
<
dnnl
::
reorder
>
AcquireTranspose
(
std
::
shared_ptr
<
dnnl
::
memory
>
dst_memory_p
,
std
::
shared_ptr
<
dnnl
::
memory
>
src_memory_p
)
{
return
std
::
make_shared
<
dnnl
::
reorder
>
(
*
(
src_memory_p
),
*
(
dst_memory_p
));
}
protected:
dnnl
::
memory
::
desc
Axis2MemoryDesc
(
std
::
vector
<
int64_t
>&
nchw_tz
,
// NOLINT
std
::
vector
<
int
>&
axis
// NOLINT
)
{
size_t
ndims
=
axis
.
size
();
std
::
vector
<
int64_t
>
strides
(
ndims
);
unsigned
int
total_stride
=
1
;
for
(
int
i
=
ndims
-
1
;
i
>=
0
;
--
i
)
{
strides
[
axis
[
i
]]
=
total_stride
;
total_stride
*=
nchw_tz
[
axis
[
i
]];
}
dnnl
::
memory
::
desc
mem_d
(
nchw_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
strides
);
return
mem_d
;
}
private:
std
::
vector
<
int64_t
>
dims_
;
std
::
vector
<
int
>
axis_
;
std
::
vector
<
int
>
logical_axis_
;
dnnl
::
engine
engine_
;
};
template
<
typename
T
>
class
TransposeMKLDNNOpKernel
:
public
paddle
::
framework
::
OpKernel
<
T
>
{
public:
...
...
@@ -98,37 +34,84 @@ class TransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
"Operator DNNL Transpose must use CPUPlace"
));
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
MKLDNNDeviceContext
>();
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
std
::
vector
<
int
>
axis
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"axis"
);
int
ndims
=
axis
.
size
();
auto
*
input
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"X"
);
auto
*
output
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
"Out"
);
const
T
*
input_data
=
input
->
data
<
T
>
();
const
auto
&
dnnl_engine
=
dev_ctx
.
GetEngine
();
std
::
vector
<
int
>
transpose_axis
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"axis"
);
int
ndims
=
transpose_axis
.
size
();
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
&
astream
=
platform
::
MKLDNNDeviceContext
::
tls
().
get_stream
();
if
(
ndims
==
1
)
{
framework
::
TensorCopy
(
*
input
,
input
->
place
(),
outp
ut
);
out
put
->
set_format
(
input
->
format
());
framework
::
TensorCopy
(
*
x
,
x
->
place
(),
o
ut
);
out
->
set_mem_desc
(
x
->
mem_desc
());
return
;
}
auto
nchw_tz
=
phi
::
vectorize
<
int64_t
>
(
input
->
dims
());
auto
x_vec_dims
=
phi
::
vectorize
(
x
->
dims
());
TransposeMKLDNNHandler
<
T
>
handler
(
nchw_tz
,
axis
,
mkldnn_engine
);
framework
::
proto
::
VarType
::
Type
x_paddle_type
=
framework
::
TransToProtoVarType
(
x
->
dtype
());
dnnl
::
memory
::
data_type
x_type
=
framework
::
ToMKLDNNDataType
(
x_paddle_type
);
platform
::
ReorderMKLDNNHandler
reorder_handler
(
x_vec_dims
,
x_paddle_type
,
x_type
,
dnnl_engine
);
auto
transpose_src_memory_p
=
handler
.
AcquireSrcMemory
(
input
->
format
(),
platform
::
to_void_cast
<
T
>
(
input_data
));
auto
transpose_dst_memory_p
=
handler
.
AcquireDstMemory
(
output
,
ctx
.
GetPlace
());
auto
transpose_p
=
handler
.
AcquireTranspose
(
transpose_dst_memory_p
,
transpose_src_memory_p
);
auto
reorder_src_memory_p
=
reorder_handler
.
AcquireSrcMemory
(
x
->
mem_desc
(),
platform
::
to_void_cast
(
x
->
data
<
T
>
()));
auto
&
astream
=
platform
::
MKLDNNDeviceContext
::
tls
().
get_stream
();
transpose_p
->
execute
(
astream
,
*
transpose_src_memory_p
,
*
transpose_dst_memory_p
);
auto
dst_md
=
dnnl
::
memory
::
desc
(
x_vec_dims
,
x
->
mem_desc
().
data_type
(),
platform
::
GetPlainMKLDNNFormat
(
x_vec_dims
.
size
()));
// a trick is used here to fake transpose of out_md, so later it will be
// "untransposed", leaving output data in plain format tag
auto
dst_strides
=
FakeTranposeStrides
(
dst_md
,
transpose_axis
);
dst_md
=
dnnl
::
memory
::
desc
(
x_vec_dims
,
x
->
mem_desc
().
data_type
(),
dst_strides
);
auto
dst_data
=
out
->
mutable_data
(
ctx
.
GetPlace
(),
x
->
type
(),
dst_md
.
get_size
());
auto
reorder_dst_memory_p
=
std
::
make_shared
<
dnnl
::
memory
>
(
dst_md
,
dnnl_engine
,
dst_data
);
auto
reorder_p
=
reorder_handler
.
AcquireReorder
(
reorder_dst_memory_p
,
reorder_src_memory_p
);
reorder_p
->
execute
(
astream
,
*
reorder_src_memory_p
,
*
reorder_dst_memory_p
);
astream
.
wait
();
output
->
set_layout
(
DataLayout
::
kNCHW
);
output
->
set_format
(
MKLDNNMemoryFormat
::
undef
);
out
->
set_mem_desc
(
reorder_dst_memory_p
->
get_desc
().
permute_axes
(
TransposeToPermuteAxis
(
transpose_axis
)));
}
private:
// it is needed because oneDNN's permute axis understand axes order in
// different way PaddlePaddle's transpose
std
::
vector
<
int
>
TransposeToPermuteAxis
(
const
std
::
vector
<
int
>&
transpose_axis
)
const
{
std
::
vector
<
int
>
permute_axis
(
transpose_axis
.
size
());
for
(
size_t
i
=
0
;
i
<
transpose_axis
.
size
();
++
i
)
{
permute_axis
[
transpose_axis
[
i
]]
=
i
;
}
return
permute_axis
;
}
std
::
vector
<
int64_t
>
FakeTranposeStrides
(
const
dnnl
::
memory
::
desc
&
dst_md
,
const
std
::
vector
<
int
>&
transpose_axis
)
const
{
std
::
vector
<
int64_t
>
fake_strides
(
transpose_axis
.
size
());
auto
dims
=
dst_md
.
dims
();
int
total_stride
=
1
;
int
ndims
=
static_cast
<
int
>
(
dims
.
size
());
for
(
int
i
=
ndims
-
1
;
i
>=
0
;
--
i
)
{
fake_strides
[
transpose_axis
[
i
]]
=
total_stride
;
total_stride
*=
dims
[
transpose_axis
[
i
]];
}
return
fake_strides
;
}
};
...
...
@@ -140,43 +123,47 @@ class TransposeMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
true
,
paddle
::
platform
::
errors
::
PreconditionNotMet
(
"Operator DNNL TransposeGrad must use CPUPlace"
));
auto
*
out_grad
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
x_grad
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
framework
::
GradVarName
(
"X"
));
if
(
!
x_grad
)
return
;
const
auto
*
dout
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
if
(
!
dx
)
return
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
MKLDNNDeviceContext
>();
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
std
::
vector
<
int
>
axis
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"axis"
);
std
::
vector
<
int
>
reversed_axis
(
axis
);
int
ndims
=
axis
.
size
();
const
auto
&
dnnl_engine
=
dev_ctx
.
GetEngine
();
std
::
vector
<
int
>
transpose_axis
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"axis"
);
auto
&
astream
=
platform
::
MKLDNNDeviceContext
::
tls
().
get_stream
();
int
ndims
=
transpose_axis
.
size
();
if
(
ndims
==
1
)
{
framework
::
TensorCopy
(
*
out_grad
,
out_grad
->
place
(),
x_grad
);
x_grad
->
set_format
(
out_grad
->
format
());
framework
::
TensorCopy
(
*
dout
,
dout
->
place
(),
dx
);
dx
->
set_mem_desc
(
dout
->
mem_desc
());
return
;
}
for
(
size_t
i
=
0
;
i
<
axis
.
size
();
i
++
)
{
reversed_axis
[
axis
[
i
]]
=
i
;
}
auto
dout_vec_dims
=
phi
::
vectorize
(
dout
->
dims
());
const
T
*
out_grad_data
=
out_grad
->
data
<
T
>
();
x_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
framework
::
proto
::
VarType
::
Type
dout_paddle_type
=
framework
::
TransToProtoVarType
(
dout
->
dtype
());
dnnl
::
memory
::
data_type
dout_type
=
framework
::
ToMKLDNNDataType
(
dout_paddle_type
);
auto
nchw_tz
=
phi
::
vectorize
<
int64_t
>
(
out_grad
->
dims
());
platform
::
ReorderMKLDNNHandler
reorder_handler
(
dout_vec_dims
,
dout_paddle_type
,
dout_type
,
dnnl_engine
);
TransposeMKLDNNHandler
<
T
>
handler
(
nchw_tz
,
reversed_axis
,
mkldnn_engine
);
auto
reorder_src_memory_p
=
reorder_handler
.
AcquireSrcMemory
(
dout
->
mem_desc
(),
platform
::
to_void_cast
(
dout
->
data
<
T
>
()));
auto
transpose_src_memory_p
=
handler
.
AcquireSrcMemory
(
out_grad
->
format
(),
platform
::
to_void_cast
<
T
>
(
out_grad_data
));
auto
transpose_dst_memory_p
=
handler
.
AcquireDstMemory
(
x_grad
,
ctx
.
GetPlace
());
auto
transpose_p
=
handler
.
AcquireTranspose
(
transpose_dst_memory_p
,
transpose_src_memory_p
);
auto
reorder_dst_memory_p
=
reorder_handler
.
AcquireDstMemory
(
dx
,
dout
->
mem_desc
(),
ctx
.
GetPlace
());
auto
&
astream
=
platform
::
MKLDNNDeviceContext
::
tls
().
get_stream
();
transpose_p
->
execute
(
astream
,
*
transpose_src_memory_p
,
*
transpose_dst_memory_p
);
auto
reorder_p
=
reorder_handler
.
AcquireReorder
(
reorder_dst_memory_p
,
reorder_src_memory_p
);
reorder_p
->
execute
(
astream
,
*
reorder_src_memory_p
,
*
reorder_dst_memory_p
);
astream
.
wait
();
dx
->
set_mem_desc
(
reorder_dst_memory_p
->
get_desc
().
permute_axes
(
transpose_axis
));
}
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录