tensor_util.h 20.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
dzhwinter 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14 15

#pragma once
S
Steffy-zxf 已提交
16 17 18 19 20
#include <algorithm>
#include <codecvt>
#include <locale>
#include <string>
#include <unordered_map>
21
#include <vector>
W
wanghuancoder 已提交
22

Y
Yi Wang 已提交
23
#include "paddle/fluid/framework/data_type.h"
6
633WHU 已提交
24
#include "paddle/fluid/framework/dlpack_tensor.h"
S
Steffy-zxf 已提交
25
#include "paddle/fluid/framework/string_array.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/framework/tensor.h"
27 28 29 30
#include "paddle/fluid/memory/allocation/allocator_facade.h"
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/memory/allocation/npu_pinned_allocator.h"
#endif
Y
Yi Wang 已提交
31
#include "paddle/fluid/platform/device_context.h"
F
fwenguang 已提交
32 33 34
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/device_context.h"
#endif
D
dzhwinter 已提交
35

L
Leo Chen 已提交
36
#include "paddle/fluid/memory/memory.h"
37
#include "paddle/phi/core/dense_tensor.h"
38

D
dzhwinter 已提交
39 40 41
namespace paddle {
namespace framework {

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
class PrintOptions {
 public:
  static PrintOptions& Instance() {
    static PrintOptions instance;
    return instance;
  }
  ~PrintOptions() {}
  PrintOptions(const PrintOptions& o) = delete;
  const PrintOptions& operator=(const PrintOptions& o) = delete;

  int precision = 8;
  int threshold = 1000;
  int edgeitems = 3;
  int linewidth = 75;
  bool sci_mode = false;

 private:
  PrintOptions() {}
};

62
void TensorToStream(std::ostream& os,
63
                    const phi::DenseTensor& tensor,
S
Steffy-zxf 已提交
64
                    const platform::DeviceContext& dev_ctx);
65
void TensorFromStream(std::istream& is,
66
                      phi::DenseTensor* tensor,
S
Steffy-zxf 已提交
67
                      const platform::DeviceContext& dev_ctx);
68
void TensorFromStream(std::istream& is,
69
                      phi::DenseTensor* tensor,
S
Steffy-zxf 已提交
70
                      const platform::DeviceContext& dev_ctx,
71 72
                      const size_t& seek,
                      const std::vector<int64_t>& shape);
S
Steffy-zxf 已提交
73

C
chengduo 已提交
74 75 76 77 78 79
// NOTE(zcd): Because TensorCopy is an async operation, when the src_place
// and dst_place are two different GPU, to ensure that the operation can
// be carried out correctly, there is a src_ctx wait operation in TensorCopy.
// If ctx_place and src_place are the same, src_ctx.Wait() is added
// after memory::Copy; if ctx_place and dst_place are the same,
// src_ctx.Wait() is added before memory::Copy.
80
void TensorCopy(const phi::DenseTensor& src,
81 82
                const platform::Place& dst_place,
                const platform::DeviceContext& ctx,
83
                phi::DenseTensor* dst);
C
chengduo 已提交
84 85 86 87 88 89 90 91

// NOTE(zcd): If the src.place() and dst_place are two different GPU,
// the copy operation is carried out on the dst_place's stream. This is
// very important, because TensorCopy is an async operator, and in most
// case, once this copy operator returns, dst is to be used in dst_place's
// stream, if this copy operation is carried out on the src_place's stream,
// when dst is used in dst_place's stream the copy operation may be
// not completed.
92
void TensorCopy(const phi::DenseTensor& src,
93
                const platform::Place& dst_place,
94
                phi::DenseTensor* dst);
C
chengduo 已提交
95

96
void TensorCopySync(const phi::DenseTensor& src,
97
                    const platform::Place& dst_place,
98
                    phi::DenseTensor* dst);
D
dzhwinter 已提交
99

Y
Yi Wang 已提交
100 101
template <typename T>
void TensorFromVector(const std::vector<T>& src,
102
                      const platform::DeviceContext& ctx,
103
                      phi::DenseTensor* dst);
Y
Yi Wang 已提交
104
template <typename T>
105
void TensorFromVector(const std::vector<T>& src, phi::DenseTensor* dst);
D
dzhwinter 已提交
106

Y
Yi Wang 已提交
107
template <typename T>
108
void TensorToVector(const phi::DenseTensor& src,
109
                    const platform::DeviceContext& ctx,
Y
Yi Wang 已提交
110 111
                    std::vector<T>* dst);
template <typename T>
112
void TesnorToVector(const phi::DenseTensor& src, std::vector<T>* dst);
D
dzhwinter 已提交
113

6
633WHU 已提交
114
// convert dlpack's DLTensor to tensor
115
void TensorFromDLPack(const ::DLTensor& dl_tensor, phi::DenseTensor* dst);
6
633WHU 已提交
116

Y
Yi Wang 已提交
117 118 119
//
// The implementation of template functions.
//
D
dzhwinter 已提交
120

121
template <typename T>
122 123 124
void TensorFromArray(const T* src,
                     const size_t& array_size,
                     const platform::DeviceContext& ctx,
125
                     phi::DenseTensor* dst) {
126 127 128 129 130 131 132 133
  auto dst_place = ctx.GetPlace();
  auto src_ptr = static_cast<const void*>(src);
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(array_size)});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = array_size * sizeof(T);

  if (platform::is_cpu_place(dst_place)) {
134
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
135
  }
136
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
137
  else if (platform::is_gpu_place(dst_place)) {  // NOLINT
L
Leo Chen 已提交
138 139 140 141 142 143
    memory::Copy(dst_place,
                 dst_ptr,
                 src_place,
                 src_ptr,
                 size,
                 reinterpret_cast<const phi::GPUContext&>(ctx).stream());
144 145
  }
#endif
146 147 148 149
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(dst_place)) {  // NOLINT
    //  1. vector -> npu pinned tensor
    platform::NPUPinnedPlace npu_pinned_place;
150
    phi::DenseTensor npu_pinned_tensor;
151 152
    npu_pinned_tensor.Resize(dst->dims());
    auto npu_pinned_ptr =
153
        npu_pinned_tensor.mutable_data(npu_pinned_place, dst->dtype());
154 155 156 157
    memory::Copy(npu_pinned_place, npu_pinned_ptr, src_place, src_ptr, size);

    //  2. async copy npu pinned tensor -> npu tensor
    memory::Copy(
158 159 160 161 162
        dst_place,
        dst_ptr,
        npu_pinned_place,
        npu_pinned_ptr,
        size,
163 164 165 166 167 168 169 170
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());

    //  3. record event
    auto npu_pinned_allocator =
        static_cast<paddle::memory::allocation::NPUPinnedAllocator*>(
            paddle::memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(npu_pinned_place)
                .get());
171
    phi::Allocation* allocation = npu_pinned_tensor.Holder().get();
172 173 174 175 176
    npu_pinned_allocator->RecordEvent(
        allocation,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());
  }
#endif
177 178 179 180 181
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(dst_place)) {  // NOLINT
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
  }
#endif
182 183 184
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  else if (platform::is_custom_place(dst_place)) {  // NOLINT
    memory::Copy(
185 186 187 188 189
        dst_place,
        dst_ptr,
        src_place,
        src_ptr,
        size,
190 191 192 193 194 195 196
        reinterpret_cast<const platform::CustomDeviceContext&>(ctx).stream());
  }
#endif
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "TensorFromArray on %s is not supported.", dst_place));
  }
197
}
198

D
dzhwinter 已提交
199
template <typename T>
Y
Yi Wang 已提交
200
void TensorFromVector(const std::vector<T>& src,
201
                      const platform::DeviceContext& ctx,
202
                      phi::DenseTensor* dst) {
D
dzhwinter 已提交
203 204 205 206 207 208 209 210
  auto dst_place = ctx.GetPlace();
  auto src_ptr = static_cast<const void*>(src.data());
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = src.size() * sizeof(T);

  if (platform::is_cpu_place(dst_place)) {
211
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
D
dzhwinter 已提交
212
  }
213
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
dzhwinter 已提交
214
  else if (platform::is_gpu_place(dst_place)) {  // NOLINT
L
Leo Chen 已提交
215 216 217 218 219 220
    memory::Copy(dst_place,
                 dst_ptr,
                 src_place,
                 src_ptr,
                 size,
                 reinterpret_cast<const phi::GPUContext&>(ctx).stream());
D
dzhwinter 已提交
221 222
  }
#endif
223
#ifdef PADDLE_WITH_ASCEND_CL
224 225 226 227 228 229
  // NOTE(zhiqiu): Becareful that aclrtMemcpyAsync is different from
  // cudaMemcpyAsync.
  // cudaMemcpyAsync is actually "sync" between cpu <-> gpu.
  // aclrtMemcpyAsync is really "async" between cpu <-> npu.
  // Since vector is on cpu, I think this function should be a "sync" operation,
  // so pass nullptr as stream to  memory::Copy().
230
  else if (platform::is_npu_place(dst_place)) {  // NOLINT
231
    //  1. vector -> npu pinned tensor
232
    phi::DenseTensor npu_pinned_tensor(dst->dtype());
233 234 235 236 237 238 239
    platform::NPUPinnedPlace npu_pinned_place;
    auto npu_pinned_ptr =
        npu_pinned_tensor.mutable_data<T>(dst->dims(), npu_pinned_place);
    memory::Copy(npu_pinned_place, npu_pinned_ptr, src_place, src_ptr, size);

    //  2. async copy npu pinned tensor -> npu tensor
    memory::Copy(
240 241 242 243 244
        dst_place,
        dst_ptr,
        npu_pinned_place,
        npu_pinned_ptr,
        size,
245 246 247 248 249 250 251 252
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());

    //  3. record event
    auto npu_pinned_allocator =
        static_cast<paddle::memory::allocation::NPUPinnedAllocator*>(
            paddle::memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(npu_pinned_place)
                .get());
253
    phi::Allocation* allocation = npu_pinned_tensor.Holder().get();
254 255 256
    npu_pinned_allocator->RecordEvent(
        allocation,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());
257 258
  }
#endif
F
fwenguang 已提交
259
#ifdef PADDLE_WITH_MLU
F
fwenguang 已提交
260
  else if (platform::is_mlu_place(dst_place)) {  // NOLINT
261
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
F
fwenguang 已提交
262 263
  }
#endif
264 265 266
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  else if (platform::is_custom_place(dst_place)) {  // NOLINT
    memory::Copy(
267 268 269 270 271
        dst_place,
        dst_ptr,
        src_place,
        src_ptr,
        size,
272 273
        reinterpret_cast<const platform::CustomDeviceContext&>(ctx).stream());
  }
274 275 276 277 278
#endif
#ifdef PADDLE_WITH_XPU
  else if (platform::is_xpu_place(dst_place)) {  // NOLINT
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
279 280 281 282 283
#endif
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "TensorFromVector on %s is not supported.", dst_place));
  }
D
dzhwinter 已提交
284 285
}

286 287 288 289
// The fully specialized function should be inline to avoid
// multi-definition.
template <>
inline void TensorFromVector(const std::vector<bool>& src,
290
                             const platform::DeviceContext& ctx,
291
                             phi::DenseTensor* dst) {
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
  // vector<bool> has no data() member, use array instead.
  // See details:
  // https://stackoverflow.com/questions/46115669/why-does-stdvectorbool-have-no-data/46115714
  bool* array = new bool[src.size()];
  for (unsigned int i = 0; i < src.size(); i++) {
    array[i] = static_cast<bool>(src[i]);
  }

  auto dst_place = ctx.GetPlace();
  auto src_ptr = static_cast<const void*>(array);
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<bool>(dst_place));
  auto size = src.size() * sizeof(bool);

  if (platform::is_cpu_place(dst_place)) {
308
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
309 310 311
  }
#ifdef PADDLE_WITH_CUDA
  else if (platform::is_gpu_place(dst_place)) {  // NOLINT
L
Leo Chen 已提交
312 313 314 315 316 317
    memory::Copy(dst_place,
                 dst_ptr,
                 src_place,
                 src_ptr,
                 size,
                 reinterpret_cast<const phi::GPUContext&>(ctx).stream());
318 319 320 321
  }
#endif
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(dst_place)) {  // NOLINT
322 323
    //  1. vector -> npu pinned tensor
    platform::NPUPinnedPlace npu_pinned_place;
324
    phi::DenseTensor npu_pinned_tensor;
325 326
    npu_pinned_tensor.Resize(dst->dims());
    auto npu_pinned_ptr =
327
        npu_pinned_tensor.mutable_data(npu_pinned_place, dst->dtype());
328 329 330 331
    memory::Copy(npu_pinned_place, npu_pinned_ptr, src_place, src_ptr, size);

    //  2. async copy npu pinned tensor -> npu tensor
    memory::Copy(
332 333 334 335 336
        dst_place,
        dst_ptr,
        npu_pinned_place,
        npu_pinned_ptr,
        size,
337 338 339 340 341 342 343 344
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());

    //  3. record event
    auto npu_pinned_allocator =
        static_cast<paddle::memory::allocation::NPUPinnedAllocator*>(
            paddle::memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(npu_pinned_place)
                .get());
345
    phi::Allocation* allocation = npu_pinned_tensor.Holder().get();
346 347 348
    npu_pinned_allocator->RecordEvent(
        allocation,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());
349 350
  }
#endif
351 352 353 354 355 356
#ifdef PADDLE_WITH_CUSTOM_DEICE
  else if (platform::is_custom_place(dst_place)) {  // NOLINT
    auto stream =
        reinterpret_cast<const platform::CustomDeviceContext&>(ctx).stream();
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, stream);
  }
357 358 359 360 361
#endif
#ifdef PADDLE_WITH_XPU
  else if (platform::is_xpu_place(dst_place)) {  // NOLINT
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
362 363 364 365 366
#endif
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "TensorFromVector on %s is not supported.", dst_place));
  }
367 368 369
  delete[] array;
}

D
dzhwinter 已提交
370
template <typename T>
371
void TensorFromVector(const std::vector<T>& src, phi::DenseTensor* dst) {
D
dzhwinter 已提交
372 373 374 375 376 377 378 379 380 381
  platform::CPUPlace dst_place = platform::CPUPlace();
  auto src_ptr = static_cast<const void*>(src.data());
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = src.size() * sizeof(T);

  memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
}

382
template <>
383 384
inline void TensorFromVector(const std::vector<bool>& src,
                             phi::DenseTensor* dst) {
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
  bool* array = new bool[src.size()];
  for (unsigned int i = 0; i < src.size(); i++) {
    array[i] = static_cast<bool>(src[i]);
  }
  platform::CPUPlace dst_place = platform::CPUPlace();
  auto src_ptr = static_cast<const void*>(array);
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<bool>(dst_place));
  auto size = src.size() * sizeof(bool);

  memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  delete[] array;
}

D
dzhwinter 已提交
400
template <typename T>
401
void TensorToVector(const phi::DenseTensor& src,
402
                    const platform::DeviceContext& ctx,
Y
Yi Wang 已提交
403
                    std::vector<T>* dst) {
D
dzhwinter 已提交
404 405 406 407 408 409 410 411
  auto src_ptr = static_cast<const void*>(src.data<T>());
  auto size = src.numel() * sizeof(T);

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(dst->data());

  if (platform::is_cpu_place(src.place())) {
412
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size);
D
dzhwinter 已提交
413
  }
414
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
dzhwinter 已提交
415
  else if (platform::is_gpu_place(src.place())) {  // NOLINT
L
Leo Chen 已提交
416 417 418 419 420 421
    memory::Copy(dst_place,
                 dst_ptr,
                 src.place(),
                 src_ptr,
                 size,
                 reinterpret_cast<const phi::GPUContext&>(ctx).stream());
D
dzhwinter 已提交
422 423
  }
#endif
424 425
#if defined(PADDLE_WITH_XPU)
  else if (platform::is_xpu_place(src.place())) {  // NOLINT
426
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size);
427 428
  }
#endif
429 430
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(src.place())) {  // NOLINT
431
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size, nullptr);
432 433
  }
#endif
F
fwenguang 已提交
434 435 436
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(src.place())) {  // NOLINT
    memory::Copy(
437 438 439 440 441
        dst_place,
        dst_ptr,
        src.place(),
        src_ptr,
        size,
F
fwenguang 已提交
442 443 444
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream());
  }
#endif
445 446 447 448 449 450 451 452 453
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  else if (platform::is_custom_place(src.place())) {  // NOLINT
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size, nullptr);
  }
#endif
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "TensorToVector on %s is not supported.", src.place()));
  }
D
dzhwinter 已提交
454 455
}

456
template <>
457
inline void TensorToVector(const phi::DenseTensor& src,
458 459 460 461 462 463 464 465 466 467 468 469
                           const platform::DeviceContext& ctx,
                           std::vector<bool>* dst) {
  auto src_ptr = static_cast<const void*>(src.data<bool>());
  auto size = src.numel() * sizeof(bool);

  bool* array = new bool[src.numel()];

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(array);

  if (platform::is_cpu_place(src.place())) {
470
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size);
471
  }
472
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
473
  else if (platform::is_gpu_place(src.place())) {  // NOLINT
L
Leo Chen 已提交
474 475 476 477 478 479
    memory::Copy(dst_place,
                 dst_ptr,
                 src.place(),
                 src_ptr,
                 size,
                 reinterpret_cast<const phi::GPUContext&>(ctx).stream());
480 481
  }
#endif
482 483
#if defined(PADDLE_WITH_XPU)
  else if (platform::is_xpu_place(src.place())) {  // NOLINT
484
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size);
485 486
  }
#endif
487 488
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(src.place())) {  // NOLINT
489
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size, nullptr);
490
  }
F
fwenguang 已提交
491 492 493
#endif
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(src.place())) {  // NOLINT
494
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size, nullptr);
F
fwenguang 已提交
495
  }
496 497 498 499 500
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  else if (platform::is_custom_place(src.place())) {  // NOLINT
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size, nullptr);
  }
501 502 503 504 505 506 507
#endif
  for (unsigned int i = 0; i < src.numel(); i++) {
    (*dst)[i] = static_cast<bool>(array[i]);
  }
  delete[] array;
}

D
dzhwinter 已提交
508
template <typename T>
509
void TensorToVector(const phi::DenseTensor& src, std::vector<T>* dst) {
D
dzhwinter 已提交
510 511 512 513 514 515 516
  auto src_ptr = static_cast<const void*>(src.data<T>());
  auto size = src.numel() * sizeof(T);

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(dst->data());

517
  PADDLE_ENFORCE_EQ(
518 519
      platform::is_cpu_place(src.place()),
      true,
520 521 522
      platform::errors::InvalidArgument(
          "The input tensor should be CPU device, but actually it is in %s.",
          src.place()));
D
dzhwinter 已提交
523

524
  memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size);
D
dzhwinter 已提交
525
}
526

527
template <>
528 529
inline void TensorToVector(const phi::DenseTensor& src,
                           std::vector<bool>* dst) {
530 531 532 533 534 535 536 537 538 539
  auto src_ptr = static_cast<const void*>(src.data<bool>());
  auto size = src.numel() * sizeof(bool);

  bool* array = new bool[src.numel()];

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(array);

  PADDLE_ENFORCE_EQ(
540 541
      platform::is_cpu_place(src.place()),
      true,
542 543 544 545
      platform::errors::InvalidArgument(
          "The input tensor should be CPU device, but actually it is in %s.",
          src.place()));

546
  memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size);
547 548 549 550 551 552 553

  for (unsigned int i = 0; i < src.numel(); i++) {
    (*dst)[i] = static_cast<bool>(array[i]);
  }
  delete[] array;
}

554 555
std::ostream& operator<<(std::ostream& os, const LoD& lod);

556 557
inline phi::DenseTensor ReshapeToMatrix(const phi::DenseTensor& src,
                                        int num_col_dims) {
L
Leo Chen 已提交
558 559 560 561 562 563
  int rank = src.dims().size();
  PADDLE_ENFORCE_GE(
      rank,
      2,
      platform::errors::InvalidArgument(
          "'ReshapeToMatrix()' is only used for flatten high rank "
564
          "tensors to matrixs. The dimensions of phi::DenseTensor must be "
L
Leo Chen 已提交
565
          "greater or equal than 2. "
566
          "But received dimensions of phi::DenseTensor is %d",
L
Leo Chen 已提交
567 568 569 570
          rank));
  if (rank == 2) {
    return src;
  }
571
  phi::DenseTensor res;
L
Leo Chen 已提交
572 573 574 575 576
  res.ShareDataWith(src);
  res.Resize(phi::flatten_to_2d(src.dims(), num_col_dims));
  return res;
}

577
template <typename T>
578
inline T GetValue(const phi::DenseTensor* x) {
579 580
  T value = static_cast<T>(0);
  if (!platform::is_cpu_place(x->place())) {
581
    phi::DenseTensor cpu_x;
582 583 584 585 586 587 588 589 590 591 592 593 594
    framework::TensorCopy(*x, platform::CPUPlace(), &cpu_x);
#if defined(PADDLE_WITH_ASCEND_CL) || defined(PADDLE_WITH_MLU)
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    const platform::DeviceContext* dev_ctx = pool.Get(x->place());
    dev_ctx->Wait();
#endif
    value = cpu_x.data<T>()[0];
  } else {
    value = x->data<T>()[0];
  }
  return value;
}

D
dzhwinter 已提交
595 596
}  // namespace framework
}  // namespace paddle
597

598
namespace phi {
599 600
std::ostream& operator<<(std::ostream& os, const DenseTensor& t);
}