tensor_util.h 8.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
dzhwinter 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14 15

#pragma once
16
#include <vector>
W
wanghuancoder 已提交
17

Y
Yi Wang 已提交
18
#include "paddle/fluid/framework/data_type.h"
6
633WHU 已提交
19
#include "paddle/fluid/framework/dlpack_tensor.h"
Y
Yi Wang 已提交
20 21 22 23
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
D
dzhwinter 已提交
24 25 26 27

namespace paddle {
namespace framework {

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
class PrintOptions {
 public:
  static PrintOptions& Instance() {
    static PrintOptions instance;
    return instance;
  }
  ~PrintOptions() {}
  PrintOptions(const PrintOptions& o) = delete;
  const PrintOptions& operator=(const PrintOptions& o) = delete;

  int precision = 8;
  int threshold = 1000;
  int edgeitems = 3;
  int linewidth = 75;
  bool sci_mode = false;

 private:
  PrintOptions() {}
};

C
chengduo 已提交
48 49 50 51 52 53
// NOTE(zcd): Because TensorCopy is an async operation, when the src_place
// and dst_place are two different GPU, to ensure that the operation can
// be carried out correctly, there is a src_ctx wait operation in TensorCopy.
// If ctx_place and src_place are the same, src_ctx.Wait() is added
// after memory::Copy; if ctx_place and dst_place are the same,
// src_ctx.Wait() is added before memory::Copy.
W
wanghuancoder 已提交
54 55
class Tensor;

Y
Yi Wang 已提交
56
void TensorCopy(const Tensor& src, const platform::Place& dst_place,
F
fengjiayi 已提交
57
                const platform::DeviceContext& ctx, Tensor* dst);
C
chengduo 已提交
58 59 60 61 62 63 64 65

// NOTE(zcd): If the src.place() and dst_place are two different GPU,
// the copy operation is carried out on the dst_place's stream. This is
// very important, because TensorCopy is an async operator, and in most
// case, once this copy operator returns, dst is to be used in dst_place's
// stream, if this copy operation is carried out on the src_place's stream,
// when dst is used in dst_place's stream the copy operation may be
// not completed.
Y
Yi Wang 已提交
66 67
void TensorCopy(const Tensor& src, const platform::Place& dst_place,
                Tensor* dst);
C
chengduo 已提交
68

F
fengjiayi 已提交
69 70
void TensorCopySync(const Tensor& src, const platform::Place& dst_place,
                    Tensor* dst);
D
dzhwinter 已提交
71

Y
Yi Wang 已提交
72 73 74 75 76
template <typename T>
void TensorFromVector(const std::vector<T>& src,
                      const platform::DeviceContext& ctx, Tensor* dst);
template <typename T>
void TensorFromVector(const std::vector<T>& src, Tensor* dst);
D
dzhwinter 已提交
77

Y
Yi Wang 已提交
78 79 80 81 82
template <typename T>
void TensorToVector(const Tensor& src, const platform::DeviceContext& ctx,
                    std::vector<T>* dst);
template <typename T>
void TesnorToVector(const Tensor& src, std::vector<T>* dst);
D
dzhwinter 已提交
83

84
// copy the result bool to cpu
Y
Yi Wang 已提交
85 86
bool TensorContainsNAN(const framework::Tensor& tensor);
bool TensorContainsInf(const framework::Tensor& tensor);
87 88 89 90 91 92
bool TensorIsfinite(const framework::Tensor& tensor);

// store the result bool in gpu tensor, async operation. Faster than above ones.
void TensorContainsNAN(const framework::Tensor& tensor, framework::Tensor* out);
void TensorContainsInf(const framework::Tensor& tensor, framework::Tensor* out);
void TensorIsfinite(const framework::Tensor& tensor, framework::Tensor* out);
D
dzhwinter 已提交
93

Y
Yi Wang 已提交
94 95 96 97
void TensorToStream(std::ostream& os, const Tensor& tensor,
                    const platform::DeviceContext& dev_ctx);
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx);
T
tangwei12 已提交
98 99 100
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx,
                      const size_t& seek, const std::vector<int64_t>& shape);
D
dzhwinter 已提交
101

J
Jack Zhou 已提交
102 103 104 105 106 107 108
// store the bool result tensor in out tensor
void TensorContainsNANV2(const framework::Tensor& tensor,
                         framework::Tensor* out);
void TensorContainsInfV2(const framework::Tensor& tensor,
                         framework::Tensor* out);
void TensorIsfiniteV2(const framework::Tensor& tensor, framework::Tensor* out);

6
633WHU 已提交
109 110 111
// convert dlpack's DLTensor to tensor
void TensorFromDLPack(const ::DLTensor& dl_tensor, framework::Tensor* dst);

Y
Yi Wang 已提交
112 113 114
//
// The implementation of template functions.
//
D
dzhwinter 已提交
115

116 117 118 119 120 121 122 123 124 125 126
template <typename T>
void TensorFromArray(const T* src, const size_t& array_size,
                     const platform::DeviceContext& ctx, Tensor* dst) {
  auto dst_place = ctx.GetPlace();
  auto src_ptr = static_cast<const void*>(src);
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(array_size)});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = array_size * sizeof(T);

  if (platform::is_cpu_place(dst_place)) {
127 128
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 src_place, src_ptr, size);
129 130 131 132
  }
#ifdef PADDLE_WITH_CUDA
  else if (platform::is_gpu_place(dst_place)) {  // NOLINT
    memory::Copy(
133 134
        BOOST_GET_CONST(platform::CUDAPlace, dst_place), dst_ptr, src_place,
        src_ptr, size,
135 136 137 138
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
}
D
dzhwinter 已提交
139
template <typename T>
Y
Yi Wang 已提交
140 141
void TensorFromVector(const std::vector<T>& src,
                      const platform::DeviceContext& ctx, Tensor* dst) {
D
dzhwinter 已提交
142 143 144 145 146 147 148 149
  auto dst_place = ctx.GetPlace();
  auto src_ptr = static_cast<const void*>(src.data());
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = src.size() * sizeof(T);

  if (platform::is_cpu_place(dst_place)) {
150 151
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 src_place, src_ptr, size);
D
dzhwinter 已提交
152 153 154 155
  }
#ifdef PADDLE_WITH_CUDA
  else if (platform::is_gpu_place(dst_place)) {  // NOLINT
    memory::Copy(
156 157
        BOOST_GET_CONST(platform::CUDAPlace, dst_place), dst_ptr, src_place,
        src_ptr, size,
D
dzhwinter 已提交
158 159 160 161 162
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
}

D
dzhwinter 已提交
163
template <typename T>
Y
Yi Wang 已提交
164
void TensorFromVector(const std::vector<T>& src, Tensor* dst) {
D
dzhwinter 已提交
165 166 167 168 169 170 171 172 173 174
  platform::CPUPlace dst_place = platform::CPUPlace();
  auto src_ptr = static_cast<const void*>(src.data());
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = src.size() * sizeof(T);

  memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
}

D
dzhwinter 已提交
175
template <typename T>
Y
Yi Wang 已提交
176 177
void TensorToVector(const Tensor& src, const platform::DeviceContext& ctx,
                    std::vector<T>* dst) {
D
dzhwinter 已提交
178 179 180 181 182 183 184 185
  auto src_ptr = static_cast<const void*>(src.data<T>());
  auto size = src.numel() * sizeof(T);

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(dst->data());

  if (platform::is_cpu_place(src.place())) {
186
    memory::Copy(dst_place, dst_ptr,
187 188
                 BOOST_GET_CONST(platform::CPUPlace, src.place()), src_ptr,
                 size);
D
dzhwinter 已提交
189 190 191 192
  }
#ifdef PADDLE_WITH_CUDA
  else if (platform::is_gpu_place(src.place())) {  // NOLINT
    memory::Copy(
193
        dst_place, dst_ptr, BOOST_GET_CONST(platform::CUDAPlace, src.place()),
194
        src_ptr, size,
D
dzhwinter 已提交
195 196 197 198 199
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
}

D
dzhwinter 已提交
200
template <typename T>
Y
Yi Wang 已提交
201
void TensorToVector(const Tensor& src, std::vector<T>* dst) {
D
dzhwinter 已提交
202 203 204 205 206 207 208
  auto src_ptr = static_cast<const void*>(src.data<T>());
  auto size = src.numel() * sizeof(T);

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(dst->data());

209 210 211 212 213
  PADDLE_ENFORCE_EQ(
      platform::is_cpu_place(src.place()), true,
      platform::errors::InvalidArgument(
          "The input tensor should be CPU device, but actually it is in %s.",
          src.place()));
D
dzhwinter 已提交
214

215 216
  memory::Copy(dst_place, dst_ptr,
               BOOST_GET_CONST(platform::CPUPlace, src.place()), src_ptr, size);
D
dzhwinter 已提交
217
}
218 219

std::ostream& operator<<(std::ostream& os, const Tensor& t);
D
dzhwinter 已提交
220 221
}  // namespace framework
}  // namespace paddle