pool_op.cc 8.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/pool_op.h"

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20
int OutputSizePool(int input_size, int filter_size, int padding, int stride) {
21 22 23 24
  int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  return output_size;
}

25 26 27 28 29 30 31
void PoolOp::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "X(Input) of Pooling should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Out"),
                 "Out(Output) of Pooling should not be null.");

  auto in_x_dims = ctx->GetInputDim("X");

C
fix doc  
chengduoZH 已提交
32
  std::string pooling_type = ctx->Attrs().Get<std::string>("poolingType");
33 34 35 36 37
  std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");

  PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
C
chengduoZH 已提交
38
                 "Pooling intput should be 4-D or 5-D tensor.");
39

C
fix doc  
chengduoZH 已提交
40
  if (ctx->Attrs().Get<bool>("globalPooling")) {
41 42 43
    ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
    for (size_t i = 0; i < ksize.size(); ++i)
      ksize[i] = static_cast<int>(in_x_dims[i + 2]);
44
  }
45 46 47 48 49 50 51 52 53 54 55 56

  PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
                 "Input size and pooling size should be consistent.");
  PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
                    "Strides size and pooling size should be the same.");
  PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
                    "Paddings size and pooling size should be the same.");

  std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
  for (size_t i = 0; i < ksize.size(); ++i) {
    output_shape.push_back(
        OutputSizePool(in_x_dims[i + 2], ksize[i], paddings[i], strides[i]));
57
  }
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
  ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
}

void PoolOpGrad::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
  PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                 "Input(X@GRAD) should not be null.");
  ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}

Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto,
                             framework::OpAttrChecker *op_checker)
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "X",
C
chengduoZH 已提交
73
      "(Tensor) The input tensor of pooling operator. "
74 75 76
      "The format of input tensor is NCHW. Where N is batch size, C is the "
      "number of channels, H and W is the height and width of feature.");
  AddOutput("Out",
C
chengduoZH 已提交
77
            "(Tensor) The output tensor of pooling operator."
78 79 80 81 82
            "The format of output tensor is also NCHW."
            "Where N is batch size, C is "
            "the number of channels, H and W is the height and "
            "width of feature.");

C
fix doc  
chengduoZH 已提交
83
  AddAttr<std::string>("poolingType",
C
chengduoZH 已提交
84 85
                       "(string), pooling type, can be \"max\" for max-pooling "
                       "and \"avg\" for average-pooling.")
86 87 88
      .InEnum({"max", "avg"});
  AddAttr<std::vector<int>>(
      "ksize",
C
fix doc  
chengduoZH 已提交
89 90
      "(vector ), the pooling window size(height, width) of pooling operator."
      "If globalPooling = true, ksize is ignored and need not be "
91
      "specified.");  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
92
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
93 94 95
  AddAttr<bool>("globalPooling",
                "(bool default: false), whether to use the global pooling."
                "If globalPooling = true, ksize is ignored.")
96
      .SetDefault(false);
C
fix doc  
chengduoZH 已提交
97 98 99
  AddAttr<std::vector<int>>(
      "strides",
      "(vector, default:{1, 1}), strides(height, width) of pooling operator.")
100
      .SetDefault({1, 1});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
101 102 103 104
  // TypedAttrChecker don't support vector type.)
  AddAttr<std::vector<int>>(
      "paddings",
      "(vector defalut:{0,0}), paddings(height, width) of pooling operator.")
105
      .SetDefault({0, 0});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
106
  // TypedAttrChecker don't support vector type.)
107 108

  AddComment(R"DOC(
C
chengduoZH 已提交
109
The pooling2d operation calculates the output based on
110
the input, poolingType and ksize, strides, paddings parameters.
C
fix doc  
chengduoZH 已提交
111 112 113 114
Input(X) and output(Out) are in NCHW format. Where N is batch size, C is the
number of channels, H and W is the height and width of feature.
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
115 116 117 118 119 120 121 122 123 124
The input(X) size and output(Out) size may be different.

Example:
  Input:
       X shape: (N, C, H_in, W_in)
  Output:
       Out shape: (N, C, H_out, W_out)
  where
       H_out = (H_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
       W_out = (W_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
125
)DOC");
126 127 128 129 130 131 132
}

Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto,
                             framework::OpAttrChecker *op_checker)
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "X",
C
chengduoZH 已提交
133
      "(Tensor) The input tensor of pooling operator. "
134 135 136 137
      "The format of input tensor is NCDHW. Where N is batch size, C is "
      "the number of channels, D, H and W is the depth, height and width of "
      "feature.");
  AddOutput("Out",
C
chengduoZH 已提交
138
            "(Tensor) The output tensor of pooling operator."
139 140 141 142 143
            "The format of output tensor is also NCDHW."
            "Where N is batch size, C is "
            "the number of channels, D, H and W is the depth, height and "
            "width of feature.");

C
fix doc  
chengduoZH 已提交
144
  AddAttr<std::string>("poolingType",
C
chengduoZH 已提交
145 146
                       "(string), pooling type, can be \"max\" for max-pooling "
                       "and \"avg\" for average-pooling.")
147 148 149
      .InEnum({"max", "avg"});
  AddAttr<std::vector<int>>(
      "ksize",
C
fix doc  
chengduoZH 已提交
150 151 152
      "(vector ), the pooling window size(depth, height, width) of pooling "
      "operator."
      "If globalPooling = true, ksize is ignored and need not be "
153 154
      "specified.");  // TODO(Chengduo): Add checker. (Currently,
                      // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
155 156 157
  AddAttr<bool>("globalPooling",
                "(bool default: false), whether to use the global pooling."
                "If globalPooling = true, ksize is ignored.")
158 159
      .SetDefault(false);
  AddAttr<std::vector<int>>("strides",
C
fix doc  
chengduoZH 已提交
160 161
                            "(vector, default:{1,1,1}), strides(depth, height, "
                            "width) of pooling operator.")
162 163
      .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
C
fix doc  
chengduoZH 已提交
164 165 166
  AddAttr<std::vector<int>>("paddings",
                            "(vector defalut:{0,0,0}), paddings(depth, height, "
                            "width) of pooling operator.")
167 168 169 170
      .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)

  AddComment(R"DOC(
C
chengduoZH 已提交
171
The pooling3d operation calculates the output based on
172
the input, poolingType and ksize, strides, paddings parameters.
C
fix doc  
chengduoZH 已提交
173 174 175 176
Input(X) and output(Out) are in NCDHW format. Where N is batch
size, C is the number of channels, D, H and W is the depth, height and
width of feature. Parameters(ksize, strides, paddings) are three elements.
These three elements represent depth, height and width, respectively.
C
chengduoZH 已提交
177 178 179 180 181 182 183 184 185 186 187
The input(X) size and output(Out) size may be different.

Example:
  Input:
       X shape: (N, C, D_in, H_in, W_in)
  Output:
       Out shape: (N, C, D_out, H_out, W_out)
  where
       D_out = (D_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
       H_out = (H_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
       W_out = (W_in - ksize[2] + 2 * paddings[2]) / strides[2] + 1;
188
)DOC");
189
}
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP(pool2d, ops::PoolOp, ops::Pool2dOpMaker, pool2d_grad,
            ops::PoolOpGrad);

REGISTER_OP_CPU_KERNEL(pool2d,
                       ops::PoolKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(pool2d_grad,
                       ops::PoolGradKernel<paddle::platform::CPUPlace, float>)

REGISTER_OP(pool3d, ops::PoolOp, ops::Pool3dOpMaker, pool3d_grad,
            ops::PoolOpGrad);

REGISTER_OP_CPU_KERNEL(pool3d,
                       ops::PoolKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(pool3d_grad,
                       ops::PoolGradKernel<paddle::platform::CPUPlace, float>);