MKLDNNConvLayer.cpp 13.8 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "MKLDNNConvLayer.h"
#include "paddle/math/MathUtils.h"
#include "paddle/utils/Logging.h"

using namespace mkldnn;  // NOLINT
typedef memory::format format;

namespace paddle {

REGISTER_LAYER(mkldnn_conv, MKLDNNConvLayer);

bool MKLDNNConvLayer::init(const LayerMap& layerMap,
                           const ParameterMap& parameterMap) {
  if (!MKLDNNLayer::init(layerMap, parameterMap)) {
    return false;
  }
31
  CHECK_EQ(inputLayers_.size(), 1UL) << "Only support one input layer yet";
T
tensor-tang 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
  CHECK_EQ(inputLayers_.size(), parameters_.size());
  CHECK(config_.shared_biases()) << "Only support shared biases yet";

  oc_ = config_.num_filters();
  const ConvConfig& conf = config_.inputs(0).conv_conf();
  ic_ = conf.channels();
  fw_ = conf.filter_size();
  fh_ = conf.filter_size_y();
  pw_ = conf.padding();
  ph_ = conf.padding_y();
  dw_ = conf.dilation();
  dh_ = conf.dilation_y();
  sw_ = conf.stride();
  sh_ = conf.stride_y();
  gp_ = conf.groups();
47
  oh_ = conf.output_y();
T
tensor-tang 已提交
48
  ow_ = conf.output_x();
49
  ih_ = conf.img_size_y();
T
tensor-tang 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
  iw_ = conf.img_size();
  caffeMode_ = conf.caffe_mode();
  CHECK(caffeMode_) << "Only support caffe mode yet";
  CHECK(dh_ == 1 && dw_ == 1) << "Only support dilation 1 yet";
  // check group setting
  CHECK_EQ((oc_ / gp_) * gp_, oc_) << "group is indivisible for oc";
  CHECK_EQ((ic_ / gp_) * gp_, ic_) << "group is indivisible for ic";

  // create weight
  size_t height = oc_ / gp_;
  size_t width = ic_ * fh_ * fw_;
  CHECK_EQ(parameters_[0]->getSize(), height * width);
  weight_ =
      std::unique_ptr<Weight>(new Weight(height, width, parameters_[0], 0));

  // create biases
  if (biasParameter_.get() != NULL) {
T
tensor-tang 已提交
67
    biases_ = std::unique_ptr<Weight>(new Weight(1, oc_, biasParameter_, 0));
T
tensor-tang 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
  }
  return true;
}

void MKLDNNConvLayer::convertWeightsFromPaddle() {
  if (hasInitedWgt_) {
    return;
  }

  CHECK(wgtVal_) << "should have been initialized";
  // the paddle weight format is oihw or goihw
  auto targetDim = wgtVal_->getDims();
  auto srcFmt = (gp_ == 1) ? memory::format::oihw : memory::format::goihw;
  wgtVal_->reorderDataFrom(wgtVal_, srcFmt, targetDim);
  hasInitedWgt_ = true;
}

void MKLDNNConvLayer::convertWeightsToPaddle() {
  CHECK(wgtVal_) << "should have been initialized";
  auto targetDim = wgtVal_->getDims();
  auto dstFmt = (gp_ == 1) ? memory::format::oihw : memory::format::goihw;
  wgtVal_->reorderDataTo(wgtVal_, dstFmt, targetDim);
}

void MKLDNNConvLayer::reshape(
    int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) {
  reshapeInput(bs, ih, iw);

  // cal output sizes
  // oc can not be changed
  int fh = (fh_ - 1) * dh_ + 1;
  int fw = (fw_ - 1) * dw_ + 1;
  oh = outputSize(ih, fh, ph_, sh_, caffeMode_);
  ow = outputSize(iw, fw, pw_, sw_, caffeMode_);

  reshapeOutput(oh, ow);
  resizeOutput(bs, oc * oh * ow);

  printSizeInfo();
}

void MKLDNNConvLayer::resetFwd(std::vector<primitive>& pipeline,
                               MKLDNNMatrixPtr& in,
                               MKLDNNMatrixPtr& wgt,
                               MKLDNNMatrixPtr& bias,
                               MKLDNNMatrixPtr& out) {
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
  resetFwdPD(fwdPD_);

  resetFwdBuffers(fwdPD_, in, wgt, bias, out);

  resetFwdPipeline(pipeline, fwdPD_, in, wgt, bias, out);
}

void MKLDNNConvLayer::resetBwd(std::vector<primitive>& pipeline,
                               MKLDNNMatrixPtr& in,
                               MKLDNNMatrixPtr& wgt,
                               MKLDNNMatrixPtr& bias,
                               MKLDNNMatrixPtr& out) {
  std::shared_ptr<conv_bwdWgt::primitive_desc> bwdWgtPD;
  std::shared_ptr<conv_bwdData::primitive_desc> bwdDataPD;

  resetBwdWgtPD(bwdWgtPD);

  resetBwdDataPD(bwdDataPD);

  resetBwdBuffers(bwdWgtPD, bwdDataPD, in, wgt, bias, out);
T
tensor-tang 已提交
134

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
  resetBwdPipeline(pipeline, bwdWgtPD, bwdDataPD, in, wgt, bias, out);
}

void MKLDNNConvLayer::updateWeights(const UpdateCallback& callback) {
  weight_->getParameterPtr()->incUpdate(callback);
  if (biases_ && biases_->getWGrad()) {
    biases_->getParameterPtr()->incUpdate(callback);
  }
}

void MKLDNNConvLayer::loadConvSettings(memory::dims& wgt,
                                       memory::dims& bias,
                                       memory::dims& stride,
                                       memory::dims& dilation,
                                       memory::dims& padL,
                                       memory::dims& padR) {
  wgt = (gp_ == 1) ? memory::dims{oc_, ic_, fh_, fw_}
                   : memory::dims{gp_, oc_ / gp_, ic_ / gp_, fh_, fw_};
  bias = memory::dims{oc_};
  stride = memory::dims{sh_, sw_};
  padL = memory::dims{ph_, pw_};
  padR = getPaddingR();
  // note: mkldnn dilation start from 0
  dilation = memory::dims{dh_ - 1, dw_ - 1};
}

void MKLDNNConvLayer::resetFwdPD(
    std::shared_ptr<conv_fwd::primitive_desc>& pd) {
T
tensor-tang 已提交
163 164 165
  // dims for conv
  memory::dims inDims = memory::dims{bs_, ic_, ih_, iw_};
  memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_};
166 167
  memory::dims wgtDims, biasDims, strides, dilations, padL, padR;
  loadConvSettings(wgtDims, biasDims, strides, dilations, padL, padR);
T
tensor-tang 已提交
168

169 170
  prop_kind pk = passType_ == PASS_TEST ? prop_kind::forward_scoring
                                        : prop_kind::forward_training;
T
tensor-tang 已提交
171 172 173
  algorithm algo = algorithm::convolution_direct;
  padding_kind padKind = padding_kind::zero;
  conv_fwd::desc fwdDesc =
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
      biases_ && biases_->getW()
          ? conv_fwd::desc(pk,
                           algo,
                           MKLDNNMatrix::createMemoryDesc(inDims),
                           MKLDNNMatrix::createMemoryDesc(wgtDims),
                           MKLDNNMatrix::createMemoryDesc(biasDims),
                           MKLDNNMatrix::createMemoryDesc(outDims),
                           strides,
                           dilations,
                           padL,
                           padR,
                           padKind)
          : conv_fwd::desc(pk,
                           algo,
                           MKLDNNMatrix::createMemoryDesc(inDims),
                           MKLDNNMatrix::createMemoryDesc(wgtDims),
                           MKLDNNMatrix::createMemoryDesc(outDims),
                           strides,
                           dilations,
                           padL,
                           padR,
                           padKind);
  pd.reset(new conv_fwd::primitive_desc(fwdDesc, engine_));
}

void MKLDNNConvLayer::resetFwdBuffers(
    std::shared_ptr<conv_fwd::primitive_desc>& pd,
    MKLDNNMatrixPtr& in,
    MKLDNNMatrixPtr& wgt,
    MKLDNNMatrixPtr& bias,
    MKLDNNMatrixPtr& out) {
  CHECK(pd);
206 207 208 209
  resetInValue(
      in, std::make_shared<memory::primitive_desc>(pd->src_primitive_desc()));

  resetOutValue(out, pd->dst_primitive_desc());
210

211
  resetWithMatrix(wgt, weight_->getW(), pd->weights_primitive_desc());
212

T
tensor-tang 已提交
213 214 215 216
  if (biases_ && biases_->getW()) {
    resetWithMatrix(bias, biases_->getW(), pd->bias_primitive_desc());
  } else {
    bias = nullptr;
217
  }
218 219 220 221 222 223 224 225 226 227 228 229 230
}

void MKLDNNConvLayer::resetFwdPipeline(
    std::vector<primitive>& pipeline,
    std::shared_ptr<conv_fwd::primitive_desc>& pd,
    MKLDNNMatrixPtr& in,
    MKLDNNMatrixPtr& wgt,
    MKLDNNMatrixPtr& bias,
    MKLDNNMatrixPtr& out) {
  if (bias) {
    fwd_.reset(new conv_fwd(*pd, *in, *wgt, *bias, *out));
  } else {
    fwd_.reset(new conv_fwd(*pd, *in, *wgt, *out));
T
tensor-tang 已提交
231
  }
232
  pipeline.push_back(*fwd_);
T
tensor-tang 已提交
233 234
}

235 236 237 238
void MKLDNNConvLayer::resetBwdWgtPD(
    std::shared_ptr<conv_bwdWgt::primitive_desc>& pd) {
  memory::dims wgtDims, biasDims, strides, dilations, padL, padR;
  loadConvSettings(wgtDims, biasDims, strides, dilations, padL, padR);
T
tensor-tang 已提交
239

240
  // create backward weight using input, output and weight value memory desc
241 242
  CHECK(inVal_) << "Should have internal input value";
  CHECK(outVal_) << "Should have internal output value";
T
tensor-tang 已提交
243 244 245
  CHECK(wgtVal_) << "Should have weight value";
  algorithm algo = algorithm::convolution_direct;
  padding_kind padKind = padding_kind::zero;
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
  auto bwdWgtDesc = biasVal_ != nullptr
                        ? conv_bwdWgt::desc(algo,
                                            inVal_->getMemoryDesc(),
                                            wgtVal_->getMemoryDesc(),
                                            biasVal_->getMemoryDesc(),
                                            outVal_->getMemoryDesc(),
                                            strides,
                                            padL,
                                            padR,
                                            padKind)
                        : conv_bwdWgt::desc(algo,
                                            inVal_->getMemoryDesc(),
                                            wgtVal_->getMemoryDesc(),
                                            outVal_->getMemoryDesc(),
                                            strides,
                                            padL,
                                            padR,
                                            padKind);
  pd.reset(new conv_bwdWgt::primitive_desc(bwdWgtDesc, engine_, *fwdPD_));
T
tensor-tang 已提交
265 266 267 268 269 270 271 272 273
  CHECK_PRIMITIVE_DESC_EQ(inVal_, pd->src_primitive_desc());
  CHECK_PRIMITIVE_DESC_EQ(
      outVal_,
      pd->diff_dst_primitive_desc(),
      "primitive desc of out value and grad should be equal");
  CHECK_PRIMITIVE_DESC_EQ(
      wgtVal_,
      pd->diff_weights_primitive_desc(),
      "primitive desc of weight value and grad should be equal");
274
}
T
tensor-tang 已提交
275

276 277
void MKLDNNConvLayer::resetBwdDataPD(
    std::shared_ptr<conv_bwdData::primitive_desc>& pd) {
278
  pd = nullptr;
279 280
  if (inputLayers_[0]->getOutput().grad == nullptr) {
    return;
T
tensor-tang 已提交
281 282
  }

283 284
  memory::dims wgtDims, biasDims, strides, dilations, padL, padR;
  loadConvSettings(wgtDims, biasDims, strides, dilations, padL, padR);
285 286
  CHECK(inVal_) << "Should have internal input value";
  CHECK(outVal_) << "Should have internal output value";
287 288 289 290 291 292 293 294 295 296 297
  // create backward data using input and output value memory desc
  // but using weight memory desc with any format
  auto bwdDataDesc = conv_bwdData::desc(algorithm::convolution_direct,
                                        inVal_->getMemoryDesc(),
                                        MKLDNNMatrix::createMemoryDesc(wgtDims),
                                        outVal_->getMemoryDesc(),
                                        strides,
                                        padL,
                                        padR,
                                        padding_kind::zero);
  pd.reset(new conv_bwdData::primitive_desc(bwdDataDesc, engine_, *fwdPD_));
T
tensor-tang 已提交
298 299 300 301 302 303 304 305
  CHECK_PRIMITIVE_DESC_EQ(
      inVal_,
      pd->diff_src_primitive_desc(),
      "primitive desc of in value and grad should be equal");
  CHECK_PRIMITIVE_DESC_EQ(
      outVal_,
      pd->diff_dst_primitive_desc(),
      "primitive desc of out value and grad should be equal");
306 307 308 309 310 311 312 313 314 315
}

void MKLDNNConvLayer::resetBwdBuffers(
    std::shared_ptr<conv_bwdWgt::primitive_desc>& wgtPD,
    std::shared_ptr<conv_bwdData::primitive_desc>& dataPD,
    MKLDNNMatrixPtr& in,
    MKLDNNMatrixPtr& wgt,
    MKLDNNMatrixPtr& bias,
    MKLDNNMatrixPtr& out) {
  CHECK(wgtPD);
316
  resetOutGrad(out, wgtPD->diff_dst_primitive_desc());
317

318 319
  resetWithMatrix(
      wgt, weight_->getWGrad(), wgtPD->diff_weights_primitive_desc());
T
tensor-tang 已提交
320 321 322 323
  CHECK_PRIMITIVE_DESC_EQ(
      wgtVal_,
      wgt->getPrimitiveDesc(),
      "primitive desc of weight grad and value should be equal");
324

325 326 327 328
  bias = nullptr;
  if (biases_ && biases_->getWGrad()) {
    resetWithMatrix(
        bias, biases_->getWGrad(), wgtPD->diff_bias_primitive_desc());
T
tensor-tang 已提交
329 330 331 332 333
    CHECK(bias);
    CHECK_PRIMITIVE_DESC_EQ(
        biasVal_,
        bias->getPrimitiveDesc(),
        "primitive desc of bias grad and value should be equal");
334
  }
335

336 337 338 339
  if (dataPD == nullptr) {
    return;
  }
  resetInGrad(in, dataPD->diff_src_primitive_desc());
340 341 342 343 344 345 346 347 348 349 350
  resetWgtValBwdData(dataPD, wgtValBwdData_);
}

void MKLDNNConvLayer::resetBwdPipeline(
    std::vector<primitive>& pipeline,
    std::shared_ptr<conv_bwdWgt::primitive_desc>& wgtPD,
    std::shared_ptr<conv_bwdData::primitive_desc>& dataPD,
    MKLDNNMatrixPtr& in,
    MKLDNNMatrixPtr& wgt,
    MKLDNNMatrixPtr& bias,
    MKLDNNMatrixPtr& out) {
351
  CHECK(inVal_);
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
  // add bwdWgt handle
  if (bias) {
    bwdWgt_.reset(new conv_bwdWgt(*wgtPD, *inVal_, *out, *wgt, *bias));
  } else {
    bwdWgt_.reset(new conv_bwdWgt(*wgtPD, *inVal_, *out, *wgt));
  }
  pipeline.push_back(*bwdWgt_);

  if (dataPD == nullptr) {
    return;
  }
  if (cvtWgtVal_) {
    pipeline.push_back(*cvtWgtVal_);
  }
  // add bwdData handle
  CHECK(wgtValBwdData_) << "Should have weight memory";
  bwdData_.reset(new conv_bwdData(*dataPD, *out, *wgtValBwdData_, *in));
  pipeline.push_back(*bwdData_);
}
T
tensor-tang 已提交
371

372 373 374 375 376 377 378 379
void MKLDNNConvLayer::resetWgtValBwdData(
    std::shared_ptr<conv_bwdData::primitive_desc>& dataPD,
    MKLDNNMatrixPtr& wgt) {
  if (dataPD == nullptr) {
    return;
  }

  // create new weight value for backward data, and create reorder if necessary
T
tensor-tang 已提交
380
  // since the primitive_desc would be different with wgtVal_
381 382
  CHECK(wgtVal_) << "should have weight value";
  if (dataPD->weights_primitive_desc() != wgtVal_->getPrimitiveDesc()) {
383
    wgtValBwdData_ = MKLDNNMatrix::create(dataPD->weights_primitive_desc());
T
tensor-tang 已提交
384 385 386 387 388
    cvtWgtVal_ = MKLDNNMatrix::createReorder(wgtVal_, wgtValBwdData_);
    CHECK(cvtWgtVal_);
  } else {
    wgtValBwdData_ = wgtVal_;
  }
T
tensor-tang 已提交
389
  VLOG(MKLDNN_FMTS) << "weight value format for backward data: "
T
tensor-tang 已提交
390 391 392 393
                    << wgtValBwdData_->getFormat();
}

}  // namespace paddle