MKLDNNConvLayer.cpp 19.1 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "MKLDNNConvLayer.h"
#include "paddle/math/MathUtils.h"
#include "paddle/utils/Logging.h"

using namespace mkldnn;  // NOLINT
typedef memory::format format;

namespace paddle {

REGISTER_LAYER(mkldnn_conv, MKLDNNConvLayer);

bool MKLDNNConvLayer::init(const LayerMap& layerMap,
                           const ParameterMap& parameterMap) {
  if (!MKLDNNLayer::init(layerMap, parameterMap)) {
    return false;
  }
  CHECK_EQ(inputLayers_.size(), 1) << "Only support one input layer yet";
  CHECK_EQ(inputLayers_.size(), parameters_.size());
  CHECK(config_.shared_biases()) << "Only support shared biases yet";

  oc_ = config_.num_filters();
  const ConvConfig& conf = config_.inputs(0).conv_conf();
  ic_ = conf.channels();
  fw_ = conf.filter_size();
  fh_ = conf.filter_size_y();
  pw_ = conf.padding();
  ph_ = conf.padding_y();
  dw_ = conf.dilation();
  dh_ = conf.dilation_y();
  sw_ = conf.stride();
  sh_ = conf.stride_y();
  gp_ = conf.groups();
47
  oh_ = conf.output_y();
T
tensor-tang 已提交
48
  ow_ = conf.output_x();
49
  ih_ = conf.img_size_y();
T
tensor-tang 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
  iw_ = conf.img_size();
  caffeMode_ = conf.caffe_mode();
  CHECK(caffeMode_) << "Only support caffe mode yet";
  CHECK(dh_ == 1 && dw_ == 1) << "Only support dilation 1 yet";
  // check group setting
  CHECK_EQ((oc_ / gp_) * gp_, oc_) << "group is indivisible for oc";
  CHECK_EQ((ic_ / gp_) * gp_, ic_) << "group is indivisible for ic";

  // create weight
  size_t height = oc_ / gp_;
  size_t width = ic_ * fh_ * fw_;
  CHECK_EQ(parameters_[0]->getSize(), height * width);
  weight_ =
      std::unique_ptr<Weight>(new Weight(height, width, parameters_[0], 0));

  // create biases
  if (biasParameter_.get() != NULL) {
    biases_ = std::unique_ptr<Weight>(new Weight(1, oc_, biasParameter_));
  }
  return true;
}

void MKLDNNConvLayer::convertWeightsFromPaddle() {
  if (hasInitedWgt_) {
    return;
  }

  CHECK(wgtVal_) << "should have been initialized";
  // the paddle weight format is oihw or goihw
  auto targetDim = wgtVal_->getDims();
  auto srcFmt = (gp_ == 1) ? memory::format::oihw : memory::format::goihw;
  wgtVal_->reorderDataFrom(wgtVal_, srcFmt, targetDim);
  hasInitedWgt_ = true;
}

void MKLDNNConvLayer::convertWeightsToPaddle() {
  CHECK(wgtVal_) << "should have been initialized";
  auto targetDim = wgtVal_->getDims();
  auto dstFmt = (gp_ == 1) ? memory::format::oihw : memory::format::goihw;
  wgtVal_->reorderDataTo(wgtVal_, dstFmt, targetDim);
}

void MKLDNNConvLayer::reshape(
    int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) {
  reshapeInput(bs, ih, iw);

  // cal output sizes
  // oc can not be changed
  int fh = (fh_ - 1) * dh_ + 1;
  int fw = (fw_ - 1) * dw_ + 1;
  oh = outputSize(ih, fh, ph_, sh_, caffeMode_);
  ow = outputSize(iw, fw, pw_, sw_, caffeMode_);

  reshapeOutput(oh, ow);
  resizeOutput(bs, oc * oh * ow);

  printSizeInfo();
}

void MKLDNNConvLayer::resetFwd(std::vector<primitive>& pipeline,
                               MKLDNNMatrixPtr& in,
                               MKLDNNMatrixPtr& wgt,
                               MKLDNNMatrixPtr& bias,
                               MKLDNNMatrixPtr& out) {
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
  resetFwdPD(fwdPD_);

  resetFwdBuffers(fwdPD_, in, wgt, bias, out);

  resetFwdPipeline(pipeline, fwdPD_, in, wgt, bias, out);

  printValueFormatFlow();
}

void MKLDNNConvLayer::resetBwd(std::vector<primitive>& pipeline,
                               MKLDNNMatrixPtr& in,
                               MKLDNNMatrixPtr& wgt,
                               MKLDNNMatrixPtr& bias,
                               MKLDNNMatrixPtr& out) {
  std::shared_ptr<conv_bwdWgt::primitive_desc> bwdWgtPD;
  std::shared_ptr<conv_bwdData::primitive_desc> bwdDataPD;

  resetBwdWgtPD(bwdWgtPD);

  resetBwdDataPD(bwdDataPD);

  resetBwdBuffers(bwdWgtPD, bwdDataPD, in, wgt, bias, out);
T
tensor-tang 已提交
136

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
  resetBwdPipeline(pipeline, bwdWgtPD, bwdDataPD, in, wgt, bias, out);

  printGradFormatFlow();
}

void MKLDNNConvLayer::updateInputData() {
  cpuInVal_->setData(getInputValue(0, CPU_DEVICE)->getData());
}

void MKLDNNConvLayer::updateWeights(const UpdateCallback& callback) {
  weight_->getParameterPtr()->incUpdate(callback);
  if (biases_ && biases_->getWGrad()) {
    biases_->getParameterPtr()->incUpdate(callback);
  }
}

void MKLDNNConvLayer::loadConvSettings(memory::dims& wgt,
                                       memory::dims& bias,
                                       memory::dims& stride,
                                       memory::dims& dilation,
                                       memory::dims& padL,
                                       memory::dims& padR) {
  wgt = (gp_ == 1) ? memory::dims{oc_, ic_, fh_, fw_}
                   : memory::dims{gp_, oc_ / gp_, ic_ / gp_, fh_, fw_};
  bias = memory::dims{oc_};
  stride = memory::dims{sh_, sw_};
  padL = memory::dims{ph_, pw_};
  padR = getPaddingR();
  // note: mkldnn dilation start from 0
  dilation = memory::dims{dh_ - 1, dw_ - 1};
}

void MKLDNNConvLayer::resetFwdPD(
    std::shared_ptr<conv_fwd::primitive_desc>& pd) {
T
tensor-tang 已提交
171 172 173
  // dims for conv
  memory::dims inDims = memory::dims{bs_, ic_, ih_, iw_};
  memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_};
174 175
  memory::dims wgtDims, biasDims, strides, dilations, padL, padR;
  loadConvSettings(wgtDims, biasDims, strides, dilations, padL, padR);
T
tensor-tang 已提交
176

177 178
  prop_kind pk = passType_ == PASS_TEST ? prop_kind::forward_scoring
                                        : prop_kind::forward_training;
T
tensor-tang 已提交
179 180 181
  algorithm algo = algorithm::convolution_direct;
  padding_kind padKind = padding_kind::zero;
  conv_fwd::desc fwdDesc =
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
      biases_ && biases_->getW()
          ? conv_fwd::desc(pk,
                           algo,
                           MKLDNNMatrix::createMemoryDesc(inDims),
                           MKLDNNMatrix::createMemoryDesc(wgtDims),
                           MKLDNNMatrix::createMemoryDesc(biasDims),
                           MKLDNNMatrix::createMemoryDesc(outDims),
                           strides,
                           dilations,
                           padL,
                           padR,
                           padKind)
          : conv_fwd::desc(pk,
                           algo,
                           MKLDNNMatrix::createMemoryDesc(inDims),
                           MKLDNNMatrix::createMemoryDesc(wgtDims),
                           MKLDNNMatrix::createMemoryDesc(outDims),
                           strides,
                           dilations,
                           padL,
                           padR,
                           padKind);
  pd.reset(new conv_fwd::primitive_desc(fwdDesc, engine_));
}

void MKLDNNConvLayer::resetFwdBuffers(
    std::shared_ptr<conv_fwd::primitive_desc>& pd,
    MKLDNNMatrixPtr& in,
    MKLDNNMatrixPtr& wgt,
    MKLDNNMatrixPtr& bias,
    MKLDNNMatrixPtr& out) {
  CHECK(pd);
  resetInValue(pd, in);

  resetWgtBiasValue(pd, wgt, bias);

  resetOutValue(pd, out);
}

void MKLDNNConvLayer::resetFwdPipeline(
    std::vector<primitive>& pipeline,
    std::shared_ptr<conv_fwd::primitive_desc>& pd,
    MKLDNNMatrixPtr& in,
    MKLDNNMatrixPtr& wgt,
    MKLDNNMatrixPtr& bias,
    MKLDNNMatrixPtr& out) {
  pipeline.clear();

  if (cvtInVal_) {
    pipeline.push_back(*cvtInVal_);
  }

  if (bias) {
    fwd_.reset(new conv_fwd(*pd, *in, *wgt, *bias, *out));
  } else {
    fwd_.reset(new conv_fwd(*pd, *in, *wgt, *out));
T
tensor-tang 已提交
238
  }
239 240 241 242 243 244
  pipeline.push_back(*fwd_);

  if (cvtOutVal_) {
    pipeline.push_back(*cvtOutVal_);
  }
}
T
tensor-tang 已提交
245

246 247 248 249 250 251 252 253
void MKLDNNConvLayer::resetInValue(
    std::shared_ptr<conv_fwd::primitive_desc>& pd, MKLDNNMatrixPtr& in) {
  const MatrixPtr& inMat = inputLayers_[0]->getOutput().value;
  in = MKLDNNMatrix::create(inMat, pd->src_primitive_desc());

  // create buffer and reorder if input value do not match
  cpuInVal_ = nullptr;
  cvtInVal_ = nullptr;
T
tensor-tang 已提交
254
  if (inputIsOnlyMKLDNN()) {
255
    MKLDNNMatrixPtr dnnIn = std::dynamic_pointer_cast<MKLDNNMatrix>(inMat);
T
tensor-tang 已提交
256 257 258
    CHECK(dnnIn) << "Input should be MKLDNNMatrix";
    if (dnnIn->getPrimitiveDesc() != in->getPrimitiveDesc()) {
      CHECK_EQ(dnnIn->getFormat(), format::nc);
259 260 261 262
      CHECK(ih_ == 1 && iw_ == 1) << "when input is nc format";
      // create a new one with nchw format and same data
      memory::dims inDims = memory::dims{bs_, ic_, 1, 1};
      dnnIn = MKLDNNMatrix::create(inMat, inDims, format::nchw, engine_);
T
tensor-tang 已提交
263 264 265 266 267
      CHECK(dnnIn->getPrimitiveDesc() == in->getPrimitiveDesc());
    }
    in = dnnIn;
  } else {
    const MatrixPtr& cpuIn = getInputValue(0, CPU_DEVICE);
268
    memory::dims inDims = memory::dims{bs_, ic_, ih_, iw_};
T
tensor-tang 已提交
269 270 271
    cpuInVal_ = MKLDNNMatrix::create(cpuIn, inDims, format::nchw, engine_);
    if (cpuInVal_->getPrimitiveDesc() != in->getPrimitiveDesc()) {
      // create new mkldnn matrix
272
      in = MKLDNNMatrix::create(nullptr, pd->src_primitive_desc());
T
tensor-tang 已提交
273
      cvtInVal_ = MKLDNNMatrix::createReorder(cpuInVal_, in);
274
      CHECK(cvtInVal_) << "should not be emptry";
T
tensor-tang 已提交
275 276 277 278
    } else {
      in = cpuInVal_;
    }
  }
279
}
T
tensor-tang 已提交
280

281 282 283 284 285 286 287 288 289 290
void MKLDNNConvLayer::resetWgtBiasValue(
    std::shared_ptr<conv_fwd::primitive_desc>& pd,
    MKLDNNMatrixPtr& wgt,
    MKLDNNMatrixPtr& bias) {
  wgt = MKLDNNMatrix::create(weight_->getW(), pd->weights_primitive_desc());
  VLOG(MKLDNN_FMTS) << "Weight value format: " << wgt->getFormat();

  bias = nullptr;
  if (biases_ && biases_->getW()) {
    bias = MKLDNNMatrix::create(biases_->getW(), pd->bias_primitive_desc());
T
tensor-tang 已提交
291
  }
292 293 294 295 296
}

void MKLDNNConvLayer::resetOutValue(
    std::shared_ptr<conv_fwd::primitive_desc>& pd, MKLDNNMatrixPtr& out) {
  out = MKLDNNMatrix::create(output_.value, pd->dst_primitive_desc());
T
tensor-tang 已提交
297 298 299

  // change original output value from cpu matrix to mkldnn matrix
  output_.value = std::dynamic_pointer_cast<Matrix>(out);
300 301 302 303

  // create reorder if output value has cpu device and pd do not match
  cpuOutVal_ = nullptr;
  cpuOutVal_ = nullptr;
T
tensor-tang 已提交
304 305
  if (!outputIsOnlyMKLDNN()) {
    const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).value;
306
    memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_};
T
tensor-tang 已提交
307 308 309
    cpuOutVal_ = MKLDNNMatrix::create(cpuOut, outDims, format::nchw, engine_);
    if (cpuOutVal_->getPrimitiveDesc() != out->getPrimitiveDesc()) {
      cvtOutVal_ = MKLDNNMatrix::createReorder(out, cpuOutVal_);
310
      CHECK(cvtOutVal_) << "should not be emptry";
T
tensor-tang 已提交
311
    } else {
312
      // CPU output share the same data of MKLDNN output
T
tensor-tang 已提交
313 314 315 316 317 318
      cpuOut->setData(out->getData());
      cpuOutVal_ = out;
    }
  }
}

319 320 321 322
void MKLDNNConvLayer::resetBwdWgtPD(
    std::shared_ptr<conv_bwdWgt::primitive_desc>& pd) {
  memory::dims wgtDims, biasDims, strides, dilations, padL, padR;
  loadConvSettings(wgtDims, biasDims, strides, dilations, padL, padR);
T
tensor-tang 已提交
323

324
  // create backward weight using input, output and weight value memory desc
T
tensor-tang 已提交
325 326 327 328 329
  CHECK(inVal_) << "Should have input value";
  CHECK(outVal_) << "Should have output value";
  CHECK(wgtVal_) << "Should have weight value";
  algorithm algo = algorithm::convolution_direct;
  padding_kind padKind = padding_kind::zero;
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
  auto bwdWgtDesc = biasVal_ != nullptr
                        ? conv_bwdWgt::desc(algo,
                                            inVal_->getMemoryDesc(),
                                            wgtVal_->getMemoryDesc(),
                                            biasVal_->getMemoryDesc(),
                                            outVal_->getMemoryDesc(),
                                            strides,
                                            padL,
                                            padR,
                                            padKind)
                        : conv_bwdWgt::desc(algo,
                                            inVal_->getMemoryDesc(),
                                            wgtVal_->getMemoryDesc(),
                                            outVal_->getMemoryDesc(),
                                            strides,
                                            padL,
                                            padR,
                                            padKind);
  pd.reset(new conv_bwdWgt::primitive_desc(bwdWgtDesc, engine_, *fwdPD_));
  CHECK(pd->src_primitive_desc() == inVal_->getPrimitiveDesc())
T
tensor-tang 已提交
350
      << "primitive desc of in value should equal";
351
  CHECK(pd->diff_dst_primitive_desc() == outVal_->getPrimitiveDesc())
T
tensor-tang 已提交
352
      << "primitive desc of out grad should equal the out value";
353
  CHECK(pd->diff_weights_primitive_desc() == wgtVal_->getPrimitiveDesc())
T
tensor-tang 已提交
354
      << "primitive desc of weight grad should equal the weight value";
355
}
T
tensor-tang 已提交
356

357 358 359 360
void MKLDNNConvLayer::resetBwdDataPD(
    std::shared_ptr<conv_bwdData::primitive_desc>& pd) {
  if (inputLayers_[0]->getOutput().grad == nullptr) {
    return;
T
tensor-tang 已提交
361 362
  }

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
  memory::dims wgtDims, biasDims, strides, dilations, padL, padR;
  loadConvSettings(wgtDims, biasDims, strides, dilations, padL, padR);
  CHECK(inVal_) << "Should have input value";
  CHECK(outVal_) << "Should have output value";
  // create backward data using input and output value memory desc
  // but using weight memory desc with any format
  auto bwdDataDesc = conv_bwdData::desc(algorithm::convolution_direct,
                                        inVal_->getMemoryDesc(),
                                        MKLDNNMatrix::createMemoryDesc(wgtDims),
                                        outVal_->getMemoryDesc(),
                                        strides,
                                        padL,
                                        padR,
                                        padding_kind::zero);
  pd.reset(new conv_bwdData::primitive_desc(bwdDataDesc, engine_, *fwdPD_));
  CHECK(pd->diff_src_primitive_desc() == inVal_->getPrimitiveDesc())
      << "primitive desc of in grad should equal the in value";
  CHECK(pd->diff_dst_primitive_desc() == outVal_->getPrimitiveDesc())
      << "primitive desc of out grad should equal";
}

void MKLDNNConvLayer::resetBwdBuffers(
    std::shared_ptr<conv_bwdWgt::primitive_desc>& wgtPD,
    std::shared_ptr<conv_bwdData::primitive_desc>& dataPD,
    MKLDNNMatrixPtr& in,
    MKLDNNMatrixPtr& wgt,
    MKLDNNMatrixPtr& bias,
    MKLDNNMatrixPtr& out) {
  CHECK(wgtPD);
  resetOutGrad(wgtPD, out);

  resetWgtBiasGrad(wgtPD, wgt, bias);

  resetInGrad(dataPD, in);

  resetWgtValBwdData(dataPD, wgtValBwdData_);
}

void MKLDNNConvLayer::resetBwdPipeline(
    std::vector<primitive>& pipeline,
    std::shared_ptr<conv_bwdWgt::primitive_desc>& wgtPD,
    std::shared_ptr<conv_bwdData::primitive_desc>& dataPD,
    MKLDNNMatrixPtr& in,
    MKLDNNMatrixPtr& wgt,
    MKLDNNMatrixPtr& bias,
    MKLDNNMatrixPtr& out) {
  pipeline.clear();

  if (cvtOutGrad_) {
    pipeline.push_back(*cvtOutGrad_);
  }

  // add bwdWgt handle
  if (bias) {
    bwdWgt_.reset(new conv_bwdWgt(*wgtPD, *inVal_, *out, *wgt, *bias));
  } else {
    bwdWgt_.reset(new conv_bwdWgt(*wgtPD, *inVal_, *out, *wgt));
  }
  pipeline.push_back(*bwdWgt_);

  if (dataPD == nullptr) {
    return;
  }

  if (cvtWgtVal_) {
    pipeline.push_back(*cvtWgtVal_);
  }

  // add bwdData handle
  CHECK(wgtValBwdData_) << "Should have weight memory";
  bwdData_.reset(new conv_bwdData(*dataPD, *out, *wgtValBwdData_, *in));
  pipeline.push_back(*bwdData_);

  if (cvtInGrad_) {
    pipeline.push_back(*cvtInGrad_);
  }
}

void MKLDNNConvLayer::resetOutGrad(
    std::shared_ptr<conv_bwdWgt::primitive_desc>& wgtPD, MKLDNNMatrixPtr& out) {
  const MatrixPtr& outMat = output_.grad;
  out = MKLDNNMatrix::create(outMat, wgtPD->diff_dst_primitive_desc());
  CHECK(outVal_ != nullptr &&
        out->getPrimitiveDesc() == outVal_->getPrimitiveDesc())
      << "primitive desc of out grad and value should be equal";

T
tensor-tang 已提交
449
  // TODO(TJ): merge outgrad
450 451 452
  // create reorder if has output grad does not match
  cpuOutGrad_ = nullptr;
  cvtOutGrad_ = nullptr;
T
tensor-tang 已提交
453 454 455 456 457 458
  if (!outputIsOnlyMKLDNN()) {
    const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).grad;
    // same PrimitiveDesc with cpuInVal_
    CHECK(cpuOutVal_);
    cpuOutGrad_ = MKLDNNMatrix::create(cpuOut, cpuOutVal_->getPrimitiveDesc());
    if (cpuOutGrad_->getPrimitiveDesc() == out->getPrimitiveDesc()) {
459
      outMat->setData(cpuOut->getData());
T
tensor-tang 已提交
460 461 462 463 464 465
      out = cpuOutGrad_;
    } else {
      cvtOutGrad_ = MKLDNNMatrix::createReorder(cpuOutGrad_, out);
      CHECK(cvtOutGrad_);
    }
  }
466
}
T
tensor-tang 已提交
467

468 469 470 471 472 473 474 475 476 477
void MKLDNNConvLayer::resetWgtBiasGrad(
    std::shared_ptr<conv_bwdWgt::primitive_desc>& wgtPD,
    MKLDNNMatrixPtr& wgt,
    MKLDNNMatrixPtr& bias) {
  wgt = MKLDNNMatrix::create(weight_->getWGrad(),
                             wgtPD->diff_weights_primitive_desc());
  CHECK(nullptr != wgtVal_ &&
        wgt->getPrimitiveDesc() == wgtVal_->getPrimitiveDesc())
      << "primitive desc of weight grad and value should be equal";
  VLOG(MKLDNN_FMTS) << "weight grad format: " << wgt->getFormat();
T
tensor-tang 已提交
478

479
  if (biasVal_ == nullptr) {
T
tensor-tang 已提交
480 481
    return;
  }
482 483 484 485 486
  bias = MKLDNNMatrix::create(biases_->getWGrad(),
                              wgtPD->diff_bias_primitive_desc());
  CHECK(bias->getPrimitiveDesc() == biasVal_->getPrimitiveDesc())
      << "primitive desc of bias grad should equal the bias value";
}
T
tensor-tang 已提交
487

488 489 490 491 492 493
void MKLDNNConvLayer::resetInGrad(
    std::shared_ptr<conv_bwdData::primitive_desc>& dataPD,
    MKLDNNMatrixPtr& in) {
  if (dataPD == nullptr) {
    return;
  }
T
tensor-tang 已提交
494 495

  // TODO(TJ): use outputMaps_ ways to get the inGrad_ when merge outgrad done
496 497 498 499 500 501 502 503
  in = MKLDNNMatrix::create(inputLayers_[0]->getOutput().grad,
                            dataPD->diff_src_primitive_desc());
  CHECK(nullptr != inVal_ &&
        in->getPrimitiveDesc() == inVal_->getPrimitiveDesc())
      << "primitive desc of input grad and value should be equal";

  // create reorder if has output grad does not match
  cpuInGrad_ = nullptr;
T
tensor-tang 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
  cvtInGrad_ = nullptr;
  if (!inputIsOnlyMKLDNN()) {
    const MatrixPtr& cpuIn = getInputGrad(0, CPU_DEVICE);
    // same PrimitiveDesc with cpuInVal_
    CHECK(cpuInVal_);
    cpuInGrad_ = MKLDNNMatrix::create(cpuIn, cpuInVal_->getPrimitiveDesc());
    if (cpuInGrad_->getPrimitiveDesc() != in->getPrimitiveDesc()) {
      const MatrixPtr& dnnIn = getInputGrad(0, MKLDNN_DEVICE);
      in = MKLDNNMatrix::create(dnnIn, in->getPrimitiveDesc());
      cvtInGrad_ = MKLDNNMatrix::createReorder(in, cpuInGrad_);
      CHECK(cvtInGrad_);
    } else {
      in = cpuInGrad_;
    }
  }
519
}
T
tensor-tang 已提交
520

521 522 523 524 525 526 527 528
void MKLDNNConvLayer::resetWgtValBwdData(
    std::shared_ptr<conv_bwdData::primitive_desc>& dataPD,
    MKLDNNMatrixPtr& wgt) {
  if (dataPD == nullptr) {
    return;
  }

  // create new weight value for backward data, and create reorder if necessary
T
tensor-tang 已提交
529
  // since the primitive_desc would be different with wgtVal_
530 531
  CHECK(wgtVal_) << "should have weight value";
  if (dataPD->weights_primitive_desc() != wgtVal_->getPrimitiveDesc()) {
T
tensor-tang 已提交
532
    wgtValBwdData_ =
533
        MKLDNNMatrix::create(nullptr, dataPD->weights_primitive_desc());
T
tensor-tang 已提交
534 535 536 537 538
    cvtWgtVal_ = MKLDNNMatrix::createReorder(wgtVal_, wgtValBwdData_);
    CHECK(cvtWgtVal_);
  } else {
    wgtValBwdData_ = wgtVal_;
  }
539
  VLOG(MKLDNN_FMTS) << "weight value format for backward data"
T
tensor-tang 已提交
540 541 542 543
                    << wgtValBwdData_->getFormat();
}

}  // namespace paddle