test_regularizer.py 11.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import unittest
C
chengduo 已提交
18 19 20
from functools import partial
import contextlib
import numpy as np
L
littletomatodonkey 已提交
21
import random
C
chengduo 已提交
22 23 24
import paddle
import paddle.fluid.core as core
import paddle.fluid as fluid
25 26 27 28
import paddle.fluid.framework as framework
import paddle.fluid.optimizer as optimizer
import paddle.fluid.regularizer as regularizer
from paddle.fluid.backward import append_backward
29 30 31 32


class TestL2DecayRegularizer(unittest.TestCase):
    def test_l2decay_regularizer(self):
L
littletomatodonkey 已提交
33
        paddle.enable_static()
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            regularizer=regularizer.L2DecayRegularizer(0.5))
        self.assertTrue(mul_x.regularizer is not None)
        self.assertTrue(
            isinstance(mul_x.regularizer, regularizer.L2DecayRegularizer))
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
55 56 57 58
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
F
fengjiayi 已提交
59
        params_grads = append_backward(mean_out)
60 61
        self.assertEqual(len(params_grads), 1)
        count_ops = len(block.ops)
62
        optimizer = paddle.optimizer.Adam()
63 64 65
        params_grads = optimizer.append_regularization_ops(params_grads)
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(block.ops), count_ops + 2)
C
chengduo 已提交
66
        self.assertEqual(block.ops[-1].type, 'sum')
67 68 69
        self.assertEqual(block.ops[-2].type, 'scale')


70 71
class TestL1DecayRegularizer(unittest.TestCase):
    def test_l2decay_regularizer(self):
L
littletomatodonkey 已提交
72
        paddle.enable_static()
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            regularizer=regularizer.L1DecayRegularizer(0.5))
        self.assertTrue(mul_x.regularizer is not None)
        self.assertTrue(
            isinstance(mul_x.regularizer, regularizer.L1DecayRegularizer))
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
94 95 96 97
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
F
fengjiayi 已提交
98
        params_grads = append_backward(mean_out)
99 100
        self.assertEqual(len(params_grads), 1)
        count_ops = len(block.ops)
101
        optimizer = paddle.optimizer.Adam()
102 103 104
        params_grads = optimizer.append_regularization_ops(params_grads)
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(block.ops), count_ops + 3)
C
chengduo 已提交
105
        self.assertEqual(block.ops[-1].type, 'sum')
106 107 108 109
        self.assertEqual(block.ops[-2].type, 'scale')
        self.assertEqual(block.ops[-3].type, 'sign')


C
chengduo 已提交
110 111 112 113
def bow_net(data,
            label,
            dict_dim,
            is_sparse=False,
114 115 116
            emb_dim=8,
            hid_dim=8,
            hid_dim2=6,
C
chengduo 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
            class_dim=2):
    """
    BOW net
    This model is from https://github.com/PaddlePaddle/models:
    fluid/PaddleNLP/text_classification/nets.py
    """
    emb = fluid.layers.embedding(
        input=data, is_sparse=is_sparse, size=[dict_dim, emb_dim])
    bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
    bow_tanh = fluid.layers.tanh(bow)
    fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh")
    fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
    prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_cost = fluid.layers.mean(x=cost)
    return avg_cost


class TestRegularizer(unittest.TestCase):
    def setUp(self):
L
littletomatodonkey 已提交
137 138 139
        self.word_len = 1500
        self.train_data = [[(random.sample(range(1000), 10), [0])]
                           for _ in range(2)]
C
chengduo 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

    def get_places(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        return places

    @contextlib.contextmanager
    def scope_prog_guard(self, main_prog, startup_prog):
        scope = fluid.core.Scope()
        with fluid.unique_name.guard():
            with fluid.scope_guard(scope):
                with fluid.program_guard(main_prog, startup_prog):
                    yield

    def run_program(self, place, feed_list):
        exe = fluid.Executor(place)
        feeder = fluid.DataFeeder(feed_list=feed_list, place=place)
        exe.run(fluid.default_startup_program())

        main_prog = fluid.default_main_program()
        param_list = [var.name for var in main_prog.block(0).all_parameters()]

        param_sum = []
        for data in self.train_data:
            out = exe.run(main_prog,
                          feed=feeder.feed(data),
                          fetch_list=param_list)
            p_sum = 0
            for v in out:
                p_sum += np.sum(np.abs(v))
            param_sum.append(p_sum)
        return param_sum

    def check_l2decay_regularizer(self, place, model):
C
cnn 已提交
175
        paddle.seed(1)
L
Leo Chen 已提交
176
        paddle.framework.random._manual_program_seed(1)
C
chengduo 已提交
177 178 179 180 181 182 183 184
        main_prog = fluid.framework.Program()
        startup_prog = fluid.framework.Program()
        with self.scope_prog_guard(
                main_prog=main_prog, startup_prog=startup_prog):
            data = fluid.layers.data(
                name="words", shape=[1], dtype="int64", lod_level=1)
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")

L
littletomatodonkey 已提交
185
            avg_cost = model(data, label, self.word_len)
C
chengduo 已提交
186 187 188 189 190 191 192 193 194

            optimizer = fluid.optimizer.Adagrad(
                learning_rate=0.1,
                regularization=fluid.regularizer.L2Decay(1.0))
            optimizer.minimize(avg_cost)
            param_sum = self.run_program(place, [data, label])
        return param_sum

    def check_l2decay(self, place, model):
C
cnn 已提交
195
        paddle.seed(1)
L
Leo Chen 已提交
196
        paddle.framework.random._manual_program_seed(1)
C
chengduo 已提交
197 198
        main_prog = fluid.framework.Program()
        startup_prog = fluid.framework.Program()
L
Leo Chen 已提交
199

C
chengduo 已提交
200 201 202 203 204 205
        with self.scope_prog_guard(
                main_prog=main_prog, startup_prog=startup_prog):
            data = fluid.layers.data(
                name="words", shape=[1], dtype="int64", lod_level=1)
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")

L
littletomatodonkey 已提交
206
            avg_cost_l2 = model(data, label, self.word_len)
C
chengduo 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238

            param_list = fluid.default_main_program().block(0).all_parameters()
            para_sum = []
            for para in param_list:
                para_mul = fluid.layers.square(x=para)
                para_sum.append(fluid.layers.reduce_sum(input=para_mul))
            avg_cost_l2 += fluid.layers.sums(para_sum) * .5

            optimizer = fluid.optimizer.Adagrad(learning_rate=0.1)
            optimizer.minimize(avg_cost_l2)
            param_sum = self.run_program(place, [data, label])
        return param_sum

    def test_l2(self):
        for place in self.get_places():
            dense_sparse_p_sum = []
            for sparse in [True, False]:
                model = partial(bow_net, is_sparse=sparse)
                framework_l2 = self.check_l2decay_regularizer(place, model)
                l2 = self.check_l2decay(place, model)
                assert len(l2) == len(framework_l2)
                for i in range(len(l2)):
                    assert np.isclose(a=framework_l2[i], b=l2[i], rtol=5e-5)
                dense_sparse_p_sum.append(framework_l2)

            assert len(dense_sparse_p_sum[0]) == len(dense_sparse_p_sum[1])
            for i in range(len(dense_sparse_p_sum[0])):
                assert np.isclose(
                    a=dense_sparse_p_sum[0][i],
                    b=dense_sparse_p_sum[1][i],
                    rtol=5e-5)

239
    def test_repeated_regularization(self):
240 241 242 243 244 245 246 247 248
        l1 = fluid.regularizer.L1Decay(regularization_coeff=0.1)
        l2 = fluid.regularizer.L2Decay(regularization_coeff=0.01)
        fc_param_attr = fluid.ParamAttr(regularizer=l1)
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            x = fluid.layers.uniform_random([2, 2, 3])
            out = fluid.layers.fc(x, 5, param_attr=fc_param_attr)
            loss = fluid.layers.reduce_sum(out)
            sgd = fluid.optimizer.SGD(learning_rate=0.1, regularization=l2)
            sgd.minimize(loss)
249 250
        with fluid.dygraph.guard():
            input = fluid.dygraph.to_variable(
251
                np.random.randn(3, 2).astype('float32'))
C
cnn 已提交
252
            paddle.seed(1)
L
Leo Chen 已提交
253
            paddle.framework.random._manual_program_seed(1)
254

255
            linear1 = fluid.dygraph.Linear(
256
                2, 2, param_attr=fc_param_attr, bias_attr=fc_param_attr)
257
            linear2 = fluid.dygraph.Linear(
258
                2, 2, param_attr=fc_param_attr, bias_attr=fc_param_attr)
259 260 261 262

            loss1 = linear1(input)
            loss1.backward()
            # set l2 regularizer in optimizer, but l1 in fluid.ParamAttr
263

264 265 266 267 268 269 270 271 272 273 274 275 276
            fluid.optimizer.SGD(parameter_list=linear1.parameters(),
                                learning_rate=1e-2,
                                regularization=l2).minimize(loss1)
            # only set l1 in fluid.ParamAttr
            loss2 = linear2(input)
            loss2.backward()
            fluid.optimizer.SGD(parameter_list=linear2.parameters(),
                                learning_rate=1e-2).minimize(loss2)
            # they should both be applied by l1, and keep the same
            self.assertTrue(
                np.allclose(linear1.weight.numpy(), linear2.weight.numpy()),
                "weight should use the regularization in fluid.ParamAttr!")
            self.assertTrue(
277
                np.allclose(linear1.bias.numpy(), linear2.bias.numpy()),
278 279
                "bias should use the regularization in fluid.ParamAttr!")

C
chengduo 已提交
280

281 282
if __name__ == '__main__':
    unittest.main()