compiler.py 15.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Z
Zeng Jinle 已提交
15
import logging
16 17 18
import multiprocessing
import os
import six
X
polish  
Xin Pan 已提交
19
import sys
20
from .. import compat as cpt
X
Xin Pan 已提交
21
from . import framework
S
sneaxiy 已提交
22
from .framework import cuda_places, cpu_places
23 24 25

from . import core

X
Xin Pan 已提交
26 27
__all__ = ['CompiledProgram', 'ExecutionStrategy', 'BuildStrategy']

28 29
ExecutionStrategy = core.ParallelExecutor.ExecutionStrategy
BuildStrategy = core.ParallelExecutor.BuildStrategy
F
flame 已提交
30 31
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
32 33 34 35 36 37 38 39


def _place_obj(place):
    p = core.Place()
    p.set_place(place)
    return p


40 41
def _is_pserver_mode(main_program):
    main = main_program if main_program \
C
chengduo 已提交
42
        else framework.default_main_program()
43 44 45 46 47 48
    for op in main.global_block().ops:
        if op.type in ["send", "recv"]:
            return True
    return False


X
polish  
Xin Pan 已提交
49
class CompiledProgram(object):
X
polish  
Xin Pan 已提交
50
    """
X
Xin Pan 已提交
51
    Compiles to Graph for execution.
X
polish  
Xin Pan 已提交
52

X
Xin Pan 已提交
53 54 55 56
    1. Users first create the program with layers.
    2. Optionally, users use CompiledProgram to optimize the program before run.
    3. The original program or CompiledProgram is run by executor.

X
polish  
Xin Pan 已提交
57 58 59 60
    The CompiledProgram is used to transform a program for various
    optimizations, for example.
      * Pre-compute some logic once so that each run is faster.
      * Transform the program so that it can run in multiple devices.
61 62
      * Transform the program for optimized inference or distributed
        training. **Note that: this part is not finished.**
X
polish  
Xin Pan 已提交
63 64

    Example:
X
Xin Pan 已提交
65
        .. code-block:: python
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

          import paddle.fluid as fluid
          import paddle.fluid.compiler as compiler
          import numpy
          import os

          place = fluid.CUDAPlace(0) # fluid.CPUPlace()
          exe = fluid.Executor(place)

          data = fluid.layers.data(name='X', shape=[1], dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          loss = fluid.layers.mean(hidden)
          fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

          fluid.default_startup_program().random_seed=1
          exe.run(fluid.default_startup_program())
          compiled_prog = compiler.CompiledProgram(
                   fluid.default_main_program())

          x = numpy.random.random(size=(10, 1)).astype('float32')
          loss_data, = exe.run(compiled_prog,
                               feed={"X": x},
                               fetch_list=[loss.name])
X
polish  
Xin Pan 已提交
89 90

    Args:
X
Xin Pan 已提交
91 92 93 94 95
        program_or_graph (Graph|Program): If it's Program, it will be first
            lowered to a graph for further optimizations. If it's a graph
            (potentially optimized before), it will be directly used for
            further optimizations. Note: graph is only supported when compiled
            with with_data_parallel option.
X
polish  
Xin Pan 已提交
96 97
    """

X
Xin Pan 已提交
98 99 100
    def __init__(self, program_or_graph):
        if isinstance(program_or_graph, core.Graph):
            self._graph = program_or_graph
101
            # don't not create a new program here.
X
Xin Pan 已提交
102 103 104 105 106 107 108 109
            self._program = None
        elif isinstance(program_or_graph, framework.Program):
            self._graph = core.Graph(program_or_graph.desc)
            self._program = program_or_graph
        else:
            raise ValueError("Wrong program_to_graph type: %s" %
                             type(program_or_graph))

X
polish  
Xin Pan 已提交
110 111 112
        self._scope = None
        self._place = None
        self._executor = None
113 114
        self._compiled = False
        self._is_data_parallel = False
F
flame 已提交
115
        self._is_inference = False
116

X
Xin Pan 已提交
117 118 119 120
    def with_data_parallel(self,
                           loss_name=None,
                           build_strategy=None,
                           exec_strategy=None,
S
sneaxiy 已提交
121 122
                           share_vars_from=None,
                           places=None):
X
Xin Pan 已提交
123 124
        """Configs the program to run in data parallel way.

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
        Example:
            .. code-block:: python

              import paddle.fluid as fluid
              import paddle.fluid.compiler as compiler
              import numpy
              import os

              use_cuda = True
              place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

              # NOTE: If you use CPU to run the program, you need
              # to specify the CPU_NUM, otherwise, fluid will use
              # all the number of the logic core as the CPU_NUM,
              # in that case, the batch size of the input should be
              # greater than CPU_NUM, if not, the process will be
              # failed by an exception.
              if not use_cuda:
                  os.environ['CPU_NUM'] = str(2)

              exe = fluid.Executor(place)

              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

              fluid.default_startup_program().random_seed=1
              exe.run(fluid.default_startup_program())
              compiled_prog = compiler.CompiledProgram(
                       fluid.default_main_program()).with_data_parallel(
                                loss_name=loss.name)

              x = numpy.random.random(size=(10, 1)).astype('float32')
              loss_data, = exe.run(compiled_prog,
                                   feed={"X": x},
                                   fetch_list=[loss.name])

X
Xin Pan 已提交
163 164 165 166 167 168 169 170 171 172 173 174
        Args:
            loss_name (str): The loss name must set in training. Default None.
            build_strategy(BuildStrategy): build_strategy is used to
                build the graph so it can run on multiple devices/cores with
                optimized topology.
                For more information, please refer to fluid.BuildStrategy.
                Default None.
            exec_strategy(ExecutionStrategy): exec_strategy is used to
                to select the a way to execute the graph, for example how many
                threads are used, how many iterations to clean up the temp
                variables. For more information, please refer
                to fluid.ExecutionStrategy. Default None.
S
sneaxiy 已提交
175
            share_vars_from(CompiledProgram): If provided, this CompiledProgram
X
Xin Pan 已提交
176 177 178
                will share variables from `share_vars_from`. `share_vars_from`
                must be run by the executor before this CompiledProgram so that
                vars are ready.
S
sneaxiy 已提交
179
            places(list(CUDAPlace)|list(CPUPlace)|None): If provided, only compile
S
sneaxiy 已提交
180 181 182
                program in the given places. Otherwise, the places used when compiled 
                is determined by the Executor, and the places used are controlled 
                by environment variables: FLAGS_selected_gpus or CUDA_VISIBLE_DEVICES
S
sneaxiy 已提交
183 184 185
                if using GPU; or CPU_NUM if using CPU. For example, if you want to 
                run on GPU 0 and 1, set places=[fluid.CUDAPlace(0), fluid.CUDAPlace(1)].
                If you want to run on 2 CPU cores, set places=[fluid.CPUPlace()]*2.  
S
sneaxiy 已提交
186

X
Xin Pan 已提交
187 188 189
        Returns:
            self
        """
190
        assert not self._is_data_parallel, "Already compiled with parallel."
X
Xin Pan 已提交
191
        assert not self._is_inference, "Cannot compile both data parallel and inference"
192 193 194 195
        self._is_data_parallel = True
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy
        self._loss_name = loss_name
X
polish  
Xin Pan 已提交
196
        self._share_vars_from = share_vars_from
X
fix  
Xin Pan 已提交
197 198 199 200
        if self._exec_strategy is None:
            self._exec_strategy = ExecutionStrategy()
        if self._build_strategy is None:
            self._build_strategy = BuildStrategy()
S
sneaxiy 已提交
201 202 203
        if places is not None:
            if not isinstance(places, (list, tuple)):
                places = [places]
S
sneaxiy 已提交
204
            self._places = places
S
sneaxiy 已提交
205 206
        else:
            self._places = None
S
sneaxiy 已提交
207
        self._build_strategy.is_distribution = _is_pserver_mode(self._program)
Z
Zeng Jinle 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

        # FIXME(dzhwinter): enable_inplace should be after memory_optimize
        # if turn on python memory optimize, turn off the inplace_pass.
        # memory_optimize and enable_inplace default are True, but we can disable them on purpose
        if self._program:
            if self._program._is_mem_optimized:
                self._build_strategy.memory_optimize = False
                self._build_strategy.enable_inplace = False
            elif not self._build_strategy.memory_optimize or not self._build_strategy.enable_inplace:
                # remind the user to try our memmory optimize strategy
                logging.warn("""
     You can try our memory optimize feature to save your memory usage:
         # create a build_strategy variable to set memory optimize option
         build_strategy = compiler.BuildStrategy()
         build_strategy.enable_inplace = True
         build_strategy.memory_optimize = True
         
         # pass the build_strategy to with_data_parallel API
         compiled_prog = compiler.CompiledProgram(main).with_data_parallel(
             loss_name=loss.name, build_strategy=build_strategy)
      
     !!! Memory optimize is our experimental feature !!!
         some variables may be removed/reused internal to save memory usage, 
         in order to fetch the right value of the fetch_list, please set the 
         persistable property to true for each variable in fetch_list

         # Sample
         conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None) 
         # if you need to fetch conv1, then:
         conv1.persistable = True

                 """)

241 242
        return self

F
flame 已提交
243 244 245 246 247 248 249 250
    def with_inference_optimize(self, config):
        """ Add inference optimize

        Args:
            config: instance of `NativeConfig` or `AnalysisConfig` to create predictor
        Returns:
            self
        """
X
Xin Pan 已提交
251
        assert not self._is_data_parallel, "Cannot compile both data parallel and inference"
X
Xin Pan 已提交
252 253
        assert not self._is_inference, "Already compiled with inference"

F
flame 已提交
254 255 256 257 258 259 260
        assert any([
            isinstance(config, InferNativeConfig),
            isinstance(config, InferAnalysisConfig)
        ])
        self._is_inference = True
        self._infer_config = config
        return self
X
polish  
Xin Pan 已提交
261

F
flame 已提交
262
    def _with_distributed(self):
X
polish  
Xin Pan 已提交
263 264
        raise NotImplementedError()

265
    def _compile_data_parallel(self, use_cuda=False, scope=None):
X
polish  
Xin Pan 已提交
266
        if self._share_vars_from:
267
            if scope:
X
polish  
Xin Pan 已提交
268 269 270 271 272 273 274 275 276
                sys.stderr.write("share_vars_from is set, scope is ignored.\n")
            if not self._share_vars_from._is_data_parallel:
                raise ValueError("share_vars_from is not data parallel. Cannot "
                                 "share vars from it.")
            if self._share_vars_from._executor is None:
                raise ValueError(
                    "share_vars_from is not compiled and run, so there is no "
                    "var to share.")
            self._local_scopes = self._share_vars_from._executor.local_scopes()
277 278
            # drop the local_exe_scopes of the previous parallel_executor
            self._share_vars_from._executor.drop_local_exe_scopes()
X
polish  
Xin Pan 已提交
279
        else:
280
            assert scope is not None, ""
X
polish  
Xin Pan 已提交
281
            self._local_scopes = []
282

S
sneaxiy 已提交
283
        self._exec_strategy.use_cuda = use_cuda
S
sneaxiy 已提交
284 285 286
        has_set_place = (self._places is not None)
        if has_set_place:
            for p in self._places:
S
sneaxiy 已提交
287
                assert p._type() == self._place._type(), \
S
sneaxiy 已提交
288
                    "Place type not match. You may set the wrong type of places"
289
        else:
S
sneaxiy 已提交
290
            self._places = cuda_places(
S
sneaxiy 已提交
291
            ) if self._exec_strategy.use_cuda else cpu_places()
292 293 294 295 296 297 298 299
        assert self._places, "no place for execution"

        if self._exec_strategy.num_threads == 0:
            if self._exec_strategy.use_cuda:
                # Experiments on se-resnext shows that too many threads hurt
                # performance. Worth tunning for other models in the future.
                self._exec_strategy.num_threads = len(self._places) * 4
            else:
S
sneaxiy 已提交
300
                self._exec_strategy.num_threads = len(self._places) * 2
301

X
Xin Pan 已提交
302 303
        # TODO(wuyi): trainer endpoings should be passed in through
        # build_strategy, not program.xxx.
304
        # TODO(gongwb): let user to set them once.
X
Xin Pan 已提交
305 306 307
        if self._program and self._build_strategy.num_trainers > 1 and \
                self._program._trainers_endpoints:
            tps = self._program._trainers_endpoints
D
dzhwinter 已提交
308

309
            assert self._build_strategy.num_trainers == len(
X
Xin Pan 已提交
310 311 312
                tps), "num_trainers == len(end_points)"
            self._build_strategy.trainers_endpoints = tps

313 314 315 316 317 318
        if self._program:
            self._build_strategy.nccl_comm_num = self._program._nccl_comm_num
            self._build_strategy.use_hierarchical_allreduce_ = self._program._use_hierarchical_allreduce
            self._build_strategy.hierarchical_allreduce_inter_nranks_ = self._program._hierarchical_allreduce_inter_nranks
            self._build_strategy.hierarchical_allreduce_exter_nranks_ = self._program._hierarchical_allreduce_exter_nranks

Q
qingqing01 已提交
319 320 321
        if self._build_strategy.sync_batch_norm:
            self._build_strategy.enable_sequential_execution = True

X
Xin Pan 已提交
322
        self._persistable_vars = []
Z
Zhen Wang 已提交
323 324 325 326
        for node in self._graph.nodes():
            if node.is_var() and node.var() is not None and node.var().persistable() and \
                    node.var().type() != core.VarDesc.VarType.RAW:
                self._persistable_vars.append(cpt.to_text(node.name()))
327 328

        places = list(map(_place_obj, self._places))
Y
Yan Xu 已提交
329 330 331 332 333 334 335 336 337 338 339
        # ParallelExecutor would broadcast all the parameters during initializing.
        # The parameters of each process should be in the same ordered for the data-parallelism
        # distributed training to keep the broadcast correct.
        self._persistable_vars = list(set(self._persistable_vars))
        self._persistable_vars.sort()

        return core.ParallelExecutor(
            places, self._persistable_vars,
            cpt.to_text(self._loss_name)
            if self._loss_name else six.u(''), self._scope, self._local_scopes,
            self._exec_strategy, self._build_strategy, self._graph)
340

F
flame 已提交
341 342 343
    def _compile_inference(self):
        return core.create_paddle_predictor(self._infer_config)

344
    def _compile(self, scope, place):
X
Xin Pan 已提交
345 346 347 348 349 350 351 352 353 354
        """Compile the program based on the configs.

        Args:
            scope: The variables (resources) that are associated with
               this compiled program.
            place: The location that the compiled program will be run on.

        Returns:
            self
        """
355
        if self._compiled:
X
polish  
Xin Pan 已提交
356 357
            if scope and self._scope != scope:
                raise ValueError("Cannot compile with different scope")
S
sneaxiy 已提交
358
            if place and not self._place._equals(place):
X
polish  
Xin Pan 已提交
359
                raise ValueError("Cannot compile with different place")
360
            return self
X
fix  
Xin Pan 已提交
361
        self._compiled = True
362 363 364 365

        self._scope = scope
        self._place = place
        if self._is_data_parallel:
366 367 368
            self._executor = self._compile_data_parallel(
                use_cuda=isinstance(self._place, core.CUDAPlace),
                scope=self._scope)
F
flame 已提交
369 370
        elif self._is_inference:
            self._executor = self._compile_inference()
371 372 373 374
        else:
            p = _place_obj(self._place)
            self._executor = core.Executor(p)
        return self