ExpandConvBaseLayer.cpp 10.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "ExpandConvBaseLayer.h"

17 18 19
#include "paddle/utils/Logging.h"
namespace paddle {

20
bool ExpandConvBaseLayer::init(const LayerMap &layerMap,
21
                               const ParameterMap &parameterMap) {
22 23 24
  /* Initialize the basic convolutional parent class */
  ConvBaseLayer::init(layerMap, parameterMap);

25 26 27 28 29 30 31
  /* The class fields channels_ and numFilters_ are the same as in the config
   * i.e., channels_ is the for the input and numFilters_ is for the output
   *
   * But in order for the variables in convTrans having the same semantic
   * meaning as in conv, we need to swap channels_ and numFilters here for
   * convTrans, and in other functions too.
   * */
L
Luo Tao 已提交
32

33 34 35
  /* Initialize the projection */
  for (auto &inputConfig : config_.inputs()) {
    const ConvConfig &conf = inputConfig.conv_conf();
L
Luo Tao 已提交
36
    int numFilters = isDeconv_ ? conf.channels() : numFilters_;
37
    subM_.push_back(numFilters / conf.groups());
L
Luo Tao 已提交
38 39 40 41 42 43 44
    subN_.push_back(conf.output_x() *
                    (conf.has_output_y() ? conf.output_y() : conf.output_x()));
    int channel = isDeconv_ ? numFilters_ : conf.channels();
    subK_.push_back(
        channel * conf.filter_size() *
        (conf.has_filter_size_y() ? conf.filter_size_y() : conf.filter_size()) /
        conf.groups());
45 46 47 48
    /* Consistent caffe mode for multiple input */
    caffeMode_ = conf.caffe_mode();
  }

49 50
  getOutputSize();

51 52 53
  return true;
}

54 55 56 57 58 59 60 61 62 63
size_t ExpandConvBaseLayer::getOutputSize() {
  CHECK_NE(inputLayers_.size(), 0UL);
  size_t layerSize = ConvBaseLayer::calOutputSize();
  subN_.clear();
  for (size_t i = 0; i < inputLayers_.size(); i++) {
    subN_.push_back(outputH_[i] * outputW_[i]);
  }
  return layerSize;
}

64
void ExpandConvBaseLayer::resetExpandInput(size_t height, size_t width) {
65 66 67
  Matrix::resizeOrCreate(expandInput_, height, width, false, useGpu_);
}

68
void ExpandConvBaseLayer::addSharedBias() {
69
  size_t mapW = getOutputSize() / numFilters_;
70 71 72 73 74 75 76 77 78 79
  size_t mapH = getOutputValue()->getElementCnt() / mapW;
  MatrixPtr out =
      Matrix::create(getOutputValue()->getData(), mapH, mapW, false, useGpu_);

  Matrix::resizeOrCreate(transOutValue_, mapW, mapH, false, useGpu_);

  out->transpose(transOutValue_, false);  // false means no memory allocation
  transOutValue_->reshape(transOutValue_->getElementCnt() / numFilters_,
                          numFilters_);

80 81 82 83 84
  MatrixPtr bias = Matrix::create(biases_->getW()->getData(),
                                  1,
                                  biases_->getW()->getElementCnt(),
                                  false,
                                  useGpu_);
85 86 87 88 89 90 91 92 93
  transOutValue_->addBias(*bias, 1.0f);

  transOutValue_->reshape(mapW, mapH);
  transOutValue_->transpose(out, false);  // false means no memory allocation

  out->clear();
  bias->clear();
}

94
void ExpandConvBaseLayer::addUnsharedBias() {
95
  MatrixPtr outValue = getOutputValue();
96 97 98 99 100
  MatrixPtr bias = Matrix::create(biases_->getW()->getData(),
                                  1,
                                  biases_->getW()->getElementCnt(),
                                  false,
                                  useGpu_);
101 102 103
  outValue->addBias(*bias, 1.0f);
}

104 105 106
void ExpandConvBaseLayer::expandOneFrame(MatrixPtr image,
                                         size_t startIdx,
                                         int inIdx) {
107
  int channel = isDeconv_ ? numFilters_ : channels_[inIdx];
108 109 110

  resetExpandInput(subK_[inIdx] * groups_[inIdx], subN_[inIdx]);
  real *imgData = image->getData() + startIdx * image->getWidth();
111 112 113 114 115 116 117 118 119 120
  MatrixPtr imageTmp =
      Matrix::create(imgData,
                     1,
                     imgSizeH_[inIdx] * imgSizeW_[inIdx] * channel,
                     false,
                     useGpu_);
  expandInput_->convExpand(*imageTmp,
                           imgSizeH_[inIdx],
                           imgSizeW_[inIdx],
                           channel,
L
Luo Tao 已提交
121
                           filterSizeY_[inIdx],
122
                           filterSize_[inIdx],
L
Luo Tao 已提交
123
                           strideY_[inIdx],
124
                           stride_[inIdx],
L
Luo Tao 已提交
125
                           paddingY_[inIdx],
126 127 128
                           padding_[inIdx],
                           outputH_[inIdx],
                           outputW_[inIdx]);
129 130 131
  imageTmp->clear();
}

132 133 134 135
void ExpandConvBaseLayer::expandFwdOnce(MatrixPtr image,
                                        MatrixPtr out,
                                        int inIdx,
                                        int startIdx) {
136 137 138 139 140 141
  int subM = subM_[inIdx];
  int subN = subN_[inIdx];
  int subK = subK_[inIdx];

  expandOneFrame(image, startIdx, inIdx);

142
  int numFilters = isDeconv_ ? channels_[inIdx] : numFilters_;
143

144
  real *outData = out->getData() + startIdx * subN * numFilters;
145 146 147 148 149

  real *wgtData = weights_[inIdx]->getW()->getData();
  real *expInData = expandInput_->getData();
  for (int g = 0; g < groups_[inIdx]; ++g) {
    MatrixPtr A =
150
        Matrix::create(wgtData, subM, subK, false, useGpu_);  // mark transpose
151 152 153 154 155 156 157 158 159 160 161 162 163
    MatrixPtr B = Matrix::create(expInData, subK, subN, false, useGpu_);
    MatrixPtr C = Matrix::create(outData, subM, subN, false, useGpu_);
    C->mul(A, B, 1, 1);

    A->clear();
    B->clear();
    C->clear();
    wgtData += subK * subM;
    expInData += subK * subN;
    outData += subM * subN;
  }
}

164 165
void ExpandConvBaseLayer::bpropActs(MatrixPtr out,
                                    MatrixPtr image,
166
                                    int inpIdx) {
167
  int channel = isDeconv_ ? numFilters_ : channels_[inpIdx];
168 169 170 171 172 173 174 175 176

  int subM = subM_[inpIdx];
  int subN = subN_[inpIdx];
  int subK = subK_[inpIdx];
  size_t batchSize = image->getHeight();

  /* reset the expand-grad memory */
  resetExpandInput(subK * groups_[inpIdx], subN);

177 178
  real *localGradData = out->getData();
  real *tgtGradData = image->getData();
179 180 181 182 183 184 185 186
  for (size_t n = 0; n < batchSize; n++) {
    real *wgtData = weights_[inpIdx]->getW()->getData();
    real *expandInData = expandInput_->getData();

    for (int g = 0; g < groups_[inpIdx]; g++) {
      // create temporary matrix
      MatrixPtr C = Matrix::create(expandInData, subK, subN, false, useGpu_);
      MatrixPtr B = Matrix::create(localGradData, subM, subN, false, useGpu_);
187
      MatrixPtr A = Matrix::create(wgtData, subM, subK, true, useGpu_);
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
      C->mul(A, B);  // mul

      // clear the temporary matrix
      A->clear();
      B->clear();
      C->clear();

      expandInData += subK * subN;
      localGradData += subM * subN;
      wgtData += subK * subM;
    }

    // shrink one frame outGrad
    MatrixPtr oneGradTmp = Matrix::create(
        expandInput_->getData(), subK * groups_[inpIdx], subN, false, useGpu_);
203 204 205 206 207 208 209 210 211 212
    MatrixPtr vTmp =
        Matrix::create(tgtGradData,
                       1,
                       imgSizeH_[inpIdx] * imgSizeW_[inpIdx] * channel,
                       false,
                       useGpu_);
    vTmp->convShrink(*oneGradTmp,
                     imgSizeH_[inpIdx],
                     imgSizeW_[inpIdx],
                     channel,
L
Luo Tao 已提交
213
                     filterSizeY_[inpIdx],
214
                     filterSize_[inpIdx],
L
Luo Tao 已提交
215
                     strideY_[inpIdx],
216
                     stride_[inpIdx],
L
Luo Tao 已提交
217
                     paddingY_[inpIdx],
218 219 220 221 222
                     padding_[inpIdx],
                     outputH_[inpIdx],
                     outputW_[inpIdx],
                     1.0f,
                     1.0f);
223 224 225 226 227 228 229 230
    vTmp->clear();
    oneGradTmp->clear();

    // move the data-pointer
    tgtGradData += imgSizeH_[inpIdx] * imgSizeW_[inpIdx] * channel;
  }
}

231 232 233
void ExpandConvBaseLayer::bpropWeights(MatrixPtr image,
                                       MatrixPtr out,
                                       int inpIdx) {
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
  MatrixPtr weightGrad = weights_[inpIdx]->getWGrad();

  int subM = subM_[inpIdx];
  int subN = subN_[inpIdx];
  int subK = subK_[inpIdx];
  size_t batchSize = image->getHeight();
  resetExpandInput(subK * groups_[inpIdx], subN);

  real *gradData = out->getData();

  for (size_t n = 0; n < batchSize; n++) {  // frame by frame
    // expand
    expandOneFrame(image, n, inpIdx);
    real *wGradData = weightGrad->getData();
    real *expandInData = expandInput_->getData();

    // expand-mul one-group by one
    for (int g = 0; g < groups_[inpIdx]; g++) {
252 253 254 255
      MatrixPtr A = Matrix::create(expandInData, subK, subN, true, useGpu_);
      MatrixPtr B = Matrix::create(gradData, subM, subN, false, useGpu_);
      MatrixPtr C = Matrix::create(wGradData, subM, subK, false, useGpu_);
      C->mul(B, A, 1, 1);
256 257 258 259 260 261 262 263 264 265 266

      A->clear();
      B->clear();
      C->clear();
      gradData += subM * subN;
      wGradData += subK * subM;
      expandInData += subK * subN;
    }
  }
}

267
void ExpandConvBaseLayer::bpropSharedBias(MatrixPtr biases, MatrixPtr v) {
268
  size_t mapW = getOutputSize() / numFilters_;
269 270 271 272 273 274 275 276 277 278 279
  size_t mapH = v->getElementCnt() / mapW;
  MatrixPtr vTmp = Matrix::create(v->getData(), mapH, mapW, false, useGpu_);

  Matrix::resizeOrCreate(transOutValue_, mapW, mapH, false, useGpu_);

  vTmp->transpose(transOutValue_, false);  // false means no memory allocation
  transOutValue_->reshape(transOutValue_->getElementCnt() / numFilters_,
                          numFilters_);
  biases->collectBias(*transOutValue_, 1.0f);
}

280
void ExpandConvBaseLayer::bpropBiases(MatrixPtr v) {
281 282 283 284 285
  MatrixPtr biases = Matrix::create(biases_->getWGrad()->getData(),
                                    1,
                                    biases_->getWGrad()->getElementCnt(),
                                    false,
                                    useGpu_);
286 287 288 289 290 291 292 293 294
  if (sharedBiases_) {
    bpropSharedBias(biases, v);
  } else {
    biases->collectBias(*v, 1.0f);
  }
  biases->clear();
}

}  // namespace paddle