ExpandConvBaseLayer.cpp 10.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "ExpandConvBaseLayer.h"

17 18 19
#include "paddle/utils/Logging.h"
namespace paddle {

20
bool ExpandConvBaseLayer::init(const LayerMap &layerMap,
21
                               const ParameterMap &parameterMap) {
22 23 24
  /* Initialize the basic convolutional parent class */
  ConvBaseLayer::init(layerMap, parameterMap);

25 26 27 28 29 30 31
  /* The class fields channels_ and numFilters_ are the same as in the config
   * i.e., channels_ is the for the input and numFilters_ is for the output
   *
   * But in order for the variables in convTrans having the same semantic
   * meaning as in conv, we need to swap channels_ and numFilters here for
   * convTrans, and in other functions too.
   * */
32
  int channel;
33
  int numFilters;
34 35 36
  /* Initialize the projection */
  for (auto &inputConfig : config_.inputs()) {
    const ConvConfig &conf = inputConfig.conv_conf();
37 38
    numFilters = isDeconv_ ? conf.channels() : numFilters_;
    subM_.push_back(numFilters / conf.groups());
39
    subN_.push_back(conf.output_x() * conf.output_x());
40
    channel = isDeconv_ ? numFilters_ : conf.channels();
41 42 43 44 45 46
    subK_.push_back(channel * conf.filter_size() * conf.filter_size() /
                    conf.groups());
    /* Consistent caffe mode for multiple input */
    caffeMode_ = conf.caffe_mode();
  }

47 48
  getOutputSize();

49 50 51
  return true;
}

52 53 54 55 56 57 58 59 60 61
size_t ExpandConvBaseLayer::getOutputSize() {
  CHECK_NE(inputLayers_.size(), 0UL);
  size_t layerSize = ConvBaseLayer::calOutputSize();
  subN_.clear();
  for (size_t i = 0; i < inputLayers_.size(); i++) {
    subN_.push_back(outputH_[i] * outputW_[i]);
  }
  return layerSize;
}

62
void ExpandConvBaseLayer::resetExpandInput(size_t height, size_t width) {
63 64 65
  Matrix::resizeOrCreate(expandInput_, height, width, false, useGpu_);
}

66
void ExpandConvBaseLayer::addSharedBias() {
67
  size_t mapW = getOutputSize() / numFilters_;
68 69 70 71 72 73 74 75 76 77
  size_t mapH = getOutputValue()->getElementCnt() / mapW;
  MatrixPtr out =
      Matrix::create(getOutputValue()->getData(), mapH, mapW, false, useGpu_);

  Matrix::resizeOrCreate(transOutValue_, mapW, mapH, false, useGpu_);

  out->transpose(transOutValue_, false);  // false means no memory allocation
  transOutValue_->reshape(transOutValue_->getElementCnt() / numFilters_,
                          numFilters_);

78 79 80 81 82
  MatrixPtr bias = Matrix::create(biases_->getW()->getData(),
                                  1,
                                  biases_->getW()->getElementCnt(),
                                  false,
                                  useGpu_);
83 84 85 86 87 88 89 90 91
  transOutValue_->addBias(*bias, 1.0f);

  transOutValue_->reshape(mapW, mapH);
  transOutValue_->transpose(out, false);  // false means no memory allocation

  out->clear();
  bias->clear();
}

92
void ExpandConvBaseLayer::addUnsharedBias() {
93
  MatrixPtr outValue = getOutputValue();
94 95 96 97 98
  MatrixPtr bias = Matrix::create(biases_->getW()->getData(),
                                  1,
                                  biases_->getW()->getElementCnt(),
                                  false,
                                  useGpu_);
99 100 101
  outValue->addBias(*bias, 1.0f);
}

102 103 104
void ExpandConvBaseLayer::expandOneFrame(MatrixPtr image,
                                         size_t startIdx,
                                         int inIdx) {
105
  int channel = isDeconv_ ? numFilters_ : channels_[inIdx];
106 107 108

  resetExpandInput(subK_[inIdx] * groups_[inIdx], subN_[inIdx]);
  real *imgData = image->getData() + startIdx * image->getWidth();
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
  MatrixPtr imageTmp =
      Matrix::create(imgData,
                     1,
                     imgSizeH_[inIdx] * imgSizeW_[inIdx] * channel,
                     false,
                     useGpu_);
  expandInput_->convExpand(*imageTmp,
                           imgSizeH_[inIdx],
                           imgSizeW_[inIdx],
                           channel,
                           filterSize_[inIdx],
                           filterSize_[inIdx],
                           stride_[inIdx],
                           stride_[inIdx],
                           padding_[inIdx],
                           padding_[inIdx],
                           outputH_[inIdx],
                           outputW_[inIdx]);
127 128 129
  imageTmp->clear();
}

130 131 132 133
void ExpandConvBaseLayer::expandFwdOnce(MatrixPtr image,
                                        MatrixPtr out,
                                        int inIdx,
                                        int startIdx) {
134 135 136 137 138 139
  int subM = subM_[inIdx];
  int subN = subN_[inIdx];
  int subK = subK_[inIdx];

  expandOneFrame(image, startIdx, inIdx);

140
  int numFilters = isDeconv_ ? channels_[inIdx] : numFilters_;
141

142
  real *outData = out->getData() + startIdx * subN * numFilters;
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

  real *wgtData = weights_[inIdx]->getW()->getData();
  real *expInData = expandInput_->getData();
  for (int g = 0; g < groups_[inIdx]; ++g) {
    MatrixPtr A =
        Matrix::create(wgtData, subK, subM, true, useGpu_);  // mark transpose
    MatrixPtr B = Matrix::create(expInData, subK, subN, false, useGpu_);
    MatrixPtr C = Matrix::create(outData, subM, subN, false, useGpu_);
    C->mul(A, B, 1, 1);

    A->clear();
    B->clear();
    C->clear();
    wgtData += subK * subM;
    expInData += subK * subN;
    outData += subM * subN;
  }
}

162 163
void ExpandConvBaseLayer::bpropActs(MatrixPtr out,
                                    MatrixPtr image,
164
                                    int inpIdx) {
165
  int channel = isDeconv_ ? numFilters_ : channels_[inpIdx];
166 167 168 169 170 171 172 173 174

  int subM = subM_[inpIdx];
  int subN = subN_[inpIdx];
  int subK = subK_[inpIdx];
  size_t batchSize = image->getHeight();

  /* reset the expand-grad memory */
  resetExpandInput(subK * groups_[inpIdx], subN);

175 176
  real *localGradData = out->getData();
  real *tgtGradData = image->getData();
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
  for (size_t n = 0; n < batchSize; n++) {
    real *wgtData = weights_[inpIdx]->getW()->getData();
    real *expandInData = expandInput_->getData();

    for (int g = 0; g < groups_[inpIdx]; g++) {
      // create temporary matrix
      MatrixPtr C = Matrix::create(expandInData, subK, subN, false, useGpu_);
      MatrixPtr B = Matrix::create(localGradData, subM, subN, false, useGpu_);
      MatrixPtr A = Matrix::create(wgtData, subK, subM, false, useGpu_);
      C->mul(A, B);  // mul

      // clear the temporary matrix
      A->clear();
      B->clear();
      C->clear();

      expandInData += subK * subN;
      localGradData += subM * subN;
      wgtData += subK * subM;
    }

    // shrink one frame outGrad
    MatrixPtr oneGradTmp = Matrix::create(
        expandInput_->getData(), subK * groups_[inpIdx], subN, false, useGpu_);
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
    MatrixPtr vTmp =
        Matrix::create(tgtGradData,
                       1,
                       imgSizeH_[inpIdx] * imgSizeW_[inpIdx] * channel,
                       false,
                       useGpu_);
    vTmp->convShrink(*oneGradTmp,
                     imgSizeH_[inpIdx],
                     imgSizeW_[inpIdx],
                     channel,
                     filterSize_[inpIdx],
                     filterSize_[inpIdx],
                     stride_[inpIdx],
                     stride_[inpIdx],
                     padding_[inpIdx],
                     padding_[inpIdx],
                     outputH_[inpIdx],
                     outputW_[inpIdx],
                     1.0f,
                     1.0f);
221 222 223 224 225 226 227 228
    vTmp->clear();
    oneGradTmp->clear();

    // move the data-pointer
    tgtGradData += imgSizeH_[inpIdx] * imgSizeW_[inpIdx] * channel;
  }
}

229 230 231
void ExpandConvBaseLayer::bpropWeights(MatrixPtr image,
                                       MatrixPtr out,
                                       int inpIdx) {
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
  MatrixPtr weightGrad = weights_[inpIdx]->getWGrad();

  int subM = subM_[inpIdx];
  int subN = subN_[inpIdx];
  int subK = subK_[inpIdx];
  size_t batchSize = image->getHeight();
  resetExpandInput(subK * groups_[inpIdx], subN);

  real *gradData = out->getData();

  for (size_t n = 0; n < batchSize; n++) {  // frame by frame
    // expand
    expandOneFrame(image, n, inpIdx);
    real *wGradData = weightGrad->getData();
    real *expandInData = expandInput_->getData();

    // expand-mul one-group by one
    for (int g = 0; g < groups_[inpIdx]; g++) {
      MatrixPtr A = Matrix::create(expandInData, subK, subN, false, useGpu_);
      MatrixPtr B = Matrix::create(gradData, subM, subN, true, useGpu_);
      MatrixPtr C = Matrix::create(wGradData, subK, subM, false, useGpu_);
      C->mul(A, B, 1, 1);

      A->clear();
      B->clear();
      C->clear();
      gradData += subM * subN;
      wGradData += subK * subM;
      expandInData += subK * subN;
    }
  }
}

265
void ExpandConvBaseLayer::bpropSharedBias(MatrixPtr biases, MatrixPtr v) {
266
  size_t mapW = getOutputSize() / numFilters_;
267 268 269 270 271 272 273 274 275 276 277
  size_t mapH = v->getElementCnt() / mapW;
  MatrixPtr vTmp = Matrix::create(v->getData(), mapH, mapW, false, useGpu_);

  Matrix::resizeOrCreate(transOutValue_, mapW, mapH, false, useGpu_);

  vTmp->transpose(transOutValue_, false);  // false means no memory allocation
  transOutValue_->reshape(transOutValue_->getElementCnt() / numFilters_,
                          numFilters_);
  biases->collectBias(*transOutValue_, 1.0f);
}

278
void ExpandConvBaseLayer::bpropBiases(MatrixPtr v) {
279 280 281 282 283
  MatrixPtr biases = Matrix::create(biases_->getWGrad()->getData(),
                                    1,
                                    biases_->getWGrad()->getElementCnt(),
                                    false,
                                    useGpu_);
284 285 286 287 288 289 290 291 292
  if (sharedBiases_) {
    bpropSharedBias(biases, v);
  } else {
    biases->collectBias(*v, 1.0f);
  }
  biases->clear();
}

}  // namespace paddle