test_tracer.cc 19.6 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//
// Created by Jiabin on 2019-08-16.
//

#include <paddle/fluid/framework/op_registry.h>
20

J
Jiabin Yang 已提交
21
#include <memory>
22
#include <set>
J
Jiabin Yang 已提交
23 24
#include <string>
#include <vector>
25

J
Jiabin Yang 已提交
26
#include "gtest/gtest.h"
27
#include "paddle/fluid/imperative/basic_engine.h"
J
Jiabin Yang 已提交
28
#include "paddle/fluid/imperative/tracer.h"
29
#include "paddle/fluid/memory/memcpy.h"
J
Jiabin Yang 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

namespace imperative = paddle::imperative;
namespace platform = paddle::platform;
namespace framework = paddle::framework;

namespace paddle {
namespace imperative {

using vb_vector = std::vector<std::shared_ptr<imperative::VarBase>>;

using var_pair = std::pair<std::string, vb_vector>;

TEST(test_tracer, test_trace_op) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<imperative::VarBase> x_in(
      new imperative::VarBase(true, "x_in"));
  std::shared_ptr<imperative::VarBase> y_in(
      new imperative::VarBase(true, "y_in"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(true, "vout"));
  platform::CPUPlace place;
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
  std::vector<int64_t> dims2 = {5, 2};

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
  x_in_tensor->Resize(framework::make_ddim(dims1));
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
  y_in_tensor->Resize(framework::make_ddim(dims2));
  auto* mutable_y = y_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size());

  var_pair x_pair = var_pair("X", vb_vector(1, x_in));
  var_pair y_pair = var_pair("Y", vb_vector(1, y_in));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
  tracer.TraceOp("mul", ins, outs, mul_attr_map, place, true);
  const auto& out_tensor = vout->Var().Get<framework::LoDTensor>();
76
  for (int i = 0; i < vout->Var().Get<framework::LoDTensor>().numel(); i++) {
J
Jiabin Yang 已提交
77 78 79 80
    ASSERT_EQ(out_tensor.data<float>()[i], 20.0);
  }
}

H
hong 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
TEST(test_tracer, test_trace_op_with_backward) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<imperative::VarBase> x_in(
      new imperative::VarBase(true, "x_in"));
  std::shared_ptr<imperative::VarBase> y_in(
      new imperative::VarBase(true, "y_in"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(true, "vout"));
  platform::CPUPlace place;
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
  std::vector<int64_t> dims2 = {5, 2};

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
  x_in_tensor->Resize(framework::make_ddim(dims1));
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
  y_in_tensor->Resize(framework::make_ddim(dims2));
  auto* mutable_y = y_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size());

  var_pair x_pair = var_pair("X", vb_vector(1, x_in));
  var_pair y_pair = var_pair("Y", vb_vector(1, y_in));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
  tracer.TraceOp("mul", ins, outs, mul_attr_map, place, true);
  const auto& out_tensor = vout->Var().Get<framework::LoDTensor>();
115
  for (int i = 0; i < vout->Var().Get<framework::LoDTensor>().numel(); i++) {
H
hong 已提交
116 117 118 119
    ASSERT_EQ(out_tensor.data<float>()[i], 20.0);
  }
}

J
Jiabin Yang 已提交
120 121 122 123 124 125
TEST(test_tracer, test_track_backward_output) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<imperative::VarBase> x_in(
      new imperative::VarBase(true, "x_in"));
  std::shared_ptr<imperative::VarBase> y_in(
126
      new imperative::VarBase(true, "y_in"));
127
  x_in->SetOverridedStopGradient(false);
J
Jiabin Yang 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(true, "vout"));
  platform::CPUPlace place;
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
  std::vector<int64_t> dims2 = {5, 2};

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
  x_in_tensor->Resize(framework::make_ddim(dims1));
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
  y_in_tensor->Resize(framework::make_ddim(dims2));
  auto* mutable_y = y_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size());

  var_pair x_pair = var_pair("X", vb_vector(1, x_in));
  var_pair y_pair = var_pair("Y", vb_vector(1, y_in));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
153
  tracer.TraceOp("mul", ins, outs, mul_attr_map, place, true);
154 155 156
  ASSERT_EQ(x_in->GradVarBase()->GradOpNum(), 0UL);
  ASSERT_EQ(y_in->GradVarBase()->GradOpNum(), 0UL);
  ASSERT_EQ(vout->GradVarBase()->GradOpNum(), 1UL);
J
Jiabin Yang 已提交
157 158 159 160 161 162 163 164 165 166
}

TEST(test_tracer, test_track_backward_input) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<imperative::VarBase> x_in(
      new imperative::VarBase(true, "x_in"));
  std::shared_ptr<imperative::VarBase> y_in(
      new imperative::VarBase(true, "y_in"));
  std::shared_ptr<imperative::VarBase> vout(
167
      new imperative::VarBase(true, "vout"));
J
Jiabin Yang 已提交
168
  platform::CPUPlace place;
169
  x_in->SetOverridedStopGradient(false);
J
Jiabin Yang 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
  std::vector<int64_t> dims2 = {5, 2};

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
  x_in_tensor->Resize(framework::make_ddim(dims1));
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
  y_in_tensor->Resize(framework::make_ddim(dims2));
  auto* mutable_y = y_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size());

  var_pair x_pair = var_pair("X", vb_vector(1, x_in));
  var_pair y_pair = var_pair("Y", vb_vector(1, y_in));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
192
  tracer.TraceOp("mul", ins, outs, mul_attr_map, place, true);
193

194 195 196
  ASSERT_EQ(x_in->GradVarBase()->GradOpNum(), 0UL);
  ASSERT_EQ(y_in->GradVarBase()->GradOpNum(), 0UL);
  ASSERT_EQ(vout->GradVarBase()->GradOpNum(), 1UL);
J
Jiabin Yang 已提交
197
}
198
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
199 200 201 202 203
TEST(test_tracer, test_trace_op_with_multi_device_inputs) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<imperative::VarBase> x_in(
      new imperative::VarBase(true, "x_in"));
H
hong 已提交
204
  x_in->SetOverridedStopGradient(false);  // force to run backward
205 206
  std::shared_ptr<imperative::VarBase> y_in(
      new imperative::VarBase(true, "y_in"));
H
hong 已提交
207
  y_in->SetOverridedStopGradient(false);
208 209 210 211 212 213
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(true, "vout"));
  platform::CPUPlace place;
  platform::CUDAPlace gpu_place(0);
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
H
hong 已提交
214
  std::vector<int64_t> dims2 = {2, 5};
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
  x_in_tensor->Resize(framework::make_ddim(dims1));
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
  y_in_tensor->Resize(framework::make_ddim(dims2));
  auto* mutable_y = y_in_tensor->mutable_data<float>(gpu_place);
  paddle::memory::Copy(gpu_place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size(), 0);
  var_pair x_pair = var_pair("X", vb_vector(1, x_in));
  var_pair y_pair = var_pair("Y", vb_vector(1, y_in));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
H
hong 已提交
233 234 235 236 237 238 239 240 241 242 243 244
  tracer.TraceOp("elementwise_add", ins, outs, mul_attr_map, gpu_place, true);

  // run reduce sum
  std::shared_ptr<imperative::VarBase> reduce_sum_out(
      new imperative::VarBase(true, "reduce_sum_out"));
  var_pair reduce_sum_in_pair = var_pair("X", vb_vector(1, vout));
  var_pair reduce_sum_out_pair = var_pair("Out", vb_vector(1, reduce_sum_out));
  imperative::NameVarBaseMap reduce_in = {reduce_sum_in_pair};
  imperative::NameVarBaseMap reduce_out = {reduce_sum_out_pair};
  framework::AttributeMap reduce_attr_map;
  tracer.TraceOp("reduce_sum", reduce_in, reduce_out, reduce_attr_map,
                 gpu_place, true);
245
  imperative::BasicEngine engine;
246
  engine.Init(reduce_sum_out.get());
247
  engine.Execute();
H
hong 已提交
248

249 250 251
  framework::LoDTensor rlt;
  framework::TensorCopySync(vout->Var().Get<framework::LoDTensor>(), place,
                            &rlt);
252
  for (int i = 0; i < rlt.numel(); i++) {
H
hong 已提交
253 254 255 256 257 258
    ASSERT_EQ(rlt.data<float>()[i], 4.0);
  }

  framework::LoDTensor out_grad;
  framework::TensorCopySync(vout->GradVar().Get<framework::LoDTensor>(), place,
                            &out_grad);
259
  for (int i = 0; i < out_grad.numel(); ++i) {
H
hong 已提交
260 261 262 263 264 265 266
    ASSERT_EQ(out_grad.data<float>()[i], 1.0);
  }

  framework::LoDTensor x_grad;
  framework::TensorCopySync(x_in->GradVar().Get<framework::LoDTensor>(), place,
                            &x_grad);

267
  for (int i = 0; i < x_grad.numel(); ++i) {
H
hong 已提交
268 269 270 271 272 273 274
    ASSERT_EQ(x_grad.data<float>()[i], 1.0);
  }

  framework::LoDTensor y_grad;
  framework::TensorCopySync(y_in->GradVar().Get<framework::LoDTensor>(), place,
                            &y_grad);

275
  for (int i = 0; i < y_grad.numel(); ++i) {
H
hong 已提交
276
    ASSERT_EQ(y_grad.data<float>()[i], 1.0);
277 278
  }
}
H
hong 已提交
279

280
#endif
281 282 283 284 285 286

TEST(test_tracer, test_unique_name_generator) {
  // generate two unique names
  imperative::Tracer tracer;
  auto fc_1 = tracer.GenerateUniqueName("fc");
  auto fc_2 = tracer.GenerateUniqueName("fc");
L
Leo Chen 已提交
287 288
  ASSERT_STREQ("fc_0", fc_1.c_str());
  ASSERT_STREQ("fc_1", fc_2.c_str());
289 290
  // use `eager_tmp` as key if not specify it.
  auto tmp_var_2 = tracer.GenerateUniqueName();
291 292 293
  ASSERT_STREQ("dygraph_tmp_2", tmp_var_2.c_str());
  auto tmp_var_3 = tracer.GenerateUniqueName("dygraph_tmp");
  ASSERT_STREQ("dygraph_tmp_3", tmp_var_3.c_str());
294 295
}

296 297 298 299 300 301 302 303 304 305 306 307
TEST(test_tracer, test_current_tracer) {
  // use current_tracer
  auto tracer = std::make_shared<imperative::Tracer>();
  imperative::SetCurrentTracer(tracer);
  auto current_tracer = imperative::GetCurrentTracer();
  ASSERT_EQ(current_tracer, tracer);
}

TEST(test_tracer, test_expected_place) {
  // default expected place is CPUPlace
  imperative::Tracer tracer;
  ASSERT_EQ(platform::is_cpu_place(tracer.ExpectedPlace()), true);
W
WangXi 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
  {
#ifdef PADDLE_WITH_CUDA
    // set to CUDAPlace
    platform::CUDAPlace gpu_place(0);
    tracer.SetExpectedPlace(gpu_place);
    ASSERT_EQ(platform::is_gpu_place(tracer.ExpectedPlace()), true);

    // assert throw
    platform::XPUPlace xpu_place(0);
    ASSERT_THROW(tracer.SetExpectedPlace(xpu_place), platform::EnforceNotMet);
#endif
  }
  {
#ifdef PADDLE_WITH_XPU
    // set to XPUPlace
    platform::XPUPlace xpu_place(0);
    tracer.SetExpectedPlace(xpu_place);
    ASSERT_EQ(platform::is_xpu_place(tracer.ExpectedPlace()), true);

    // assert throw
    platform::CUDAPlace cuda_place(0);
    ASSERT_THROW(tracer.SetExpectedPlace(cuda_place), platform::EnforceNotMet);
#endif
  }
332 333
}

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
TEST(test_tracer, test_var_without_grad_var) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<imperative::VarBase> x_in(
      new imperative::VarBase(true, "x_in"));
  x_in->ClearGradVarBase();
  std::shared_ptr<imperative::VarBase> y_in(
      new imperative::VarBase(true, "y_in"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(true, "vout"));
  x_in->SetOverridedStopGradient(false);
  y_in->SetOverridedStopGradient(false);
  platform::CPUPlace place;
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
  std::vector<int64_t> dims2 = {5, 2};

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
  x_in_tensor->Resize(framework::make_ddim(dims1));
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
  y_in_tensor->Resize(framework::make_ddim(dims2));
  auto* mutable_y = y_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size());

  var_pair x_pair = var_pair("X", vb_vector(1, x_in));
  var_pair y_pair = var_pair("Y", vb_vector(1, y_in));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
  tracer.TraceOp("mul", ins, outs, mul_attr_map, place, true);

  const auto& out_tensor = vout->Var().Get<framework::LoDTensor>();
  for (int i = 0; i < vout->Var().Get<framework::LoDTensor>().numel(); i++) {
    ASSERT_EQ(out_tensor.data<float>()[i], 20.0);
  }

376 377 378
  ASSERT_EQ(x_in->GradVarBase()->GradOpNum(), 0UL);
  ASSERT_EQ(y_in->GradVarBase()->GradOpNum(), 0UL);
  ASSERT_EQ(vout->GradVarBase()->GradOpNum(), 1UL);
379

380
  imperative::BasicEngine engine;
381
  engine.Init(vout.get());
382
  engine.Execute();
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401

  // check the grad
  framework::LoDTensor x_grad;
  framework::TensorCopySync(x_in->GradVar().Get<framework::LoDTensor>(), place,
                            &x_grad);

  for (int i = 0; i < x_grad.numel(); ++i) {
    ASSERT_EQ(x_grad.data<float>()[i], 4.0);
  }

  framework::LoDTensor y_grad;
  framework::TensorCopySync(y_in->GradVar().Get<framework::LoDTensor>(), place,
                            &y_grad);

  for (int i = 0; i < y_grad.numel(); ++i) {
    ASSERT_EQ(y_grad.data<float>()[i], 4.0);
  }
}

402 403 404 405 406 407 408 409 410
template <typename T>
using WeakPtrSet =
    std::set<std::weak_ptr<T>, std::owner_less<std::weak_ptr<T>>>;

static void TestVarOpDestructionMain(const platform::Place& place,
                                     int64_t tensor_size = 10,
                                     size_t loop_num = 10) {
  WeakPtrSet<VariableWrapper> var_wrappers;
  WeakPtrSet<VarBase> var_bases;
411
  WeakPtrSet<GradOpNode> op_bases;
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441

  Tracer tracer;

  {
    auto x = std::make_shared<VarBase>("x");
    auto y = std::make_shared<VarBase>("y");

    x->MutableVar()
        ->GetMutable<framework::LoDTensor>()
        ->Resize({tensor_size, tensor_size})
        .mutable_data<float>(place);

    y->MutableVar()
        ->GetMutable<framework::LoDTensor>()
        ->Resize({tensor_size, tensor_size})
        .mutable_data<float>(place);

    x->SetOverridedStopGradient(false);
    y->SetOverridedStopGradient(true);

    for (size_t i = 0; i < loop_num; ++i) {
      size_t var_wrapper_num = var_wrappers.size();
      size_t var_base_num = var_bases.size();
      size_t op_base_num = op_bases.size();

      auto z = std::make_shared<VarBase>("z_" + std::to_string(i));
      tracer.TraceOp("mul", NameVarBaseMap{{"X", {x}}, {"Y", {y}}},
                     NameVarBaseMap{{"Out", {z}}}, framework::AttributeMap{},
                     place, true);

442 443 444
      ASSERT_EQ(z->GradOpNum(), 0UL);
      ASSERT_EQ(z->GradVarBase()->GradOpNum(), 1UL);
      auto new_op = z->GradVarBase()->GradNode();
445

446 447
      ASSERT_EQ(x->GradOpNum(), 0UL);
      ASSERT_EQ(y->GradOpNum(), 0UL);
448

449
      std::unordered_set<std::shared_ptr<GradOpNode>> expected_pending_ops;
450
      if (i == 0) {
451 452
        ASSERT_EQ(x->GradVarBase()->GradOpNum(), 0UL);
        ASSERT_EQ(y->GradVarBase()->GradOpNum(), 0UL);
453
      } else {
454 455
        ASSERT_EQ(x->GradVarBase()->GradOpNum(), 1UL);
        ASSERT_EQ(y->GradVarBase()->GradOpNum(), 0UL);
456

457 458
        if (x->GradVarBase()->GradNode()) {
          expected_pending_ops.emplace(x->GradVarBase()->GradNode());
459
        }
460 461 462

        if (y->GradVarBase()->GradNode()) {
          expected_pending_ops.emplace(y->GradVarBase()->GradNode());
463 464
        }

465 466
        std::unordered_set<std::shared_ptr<GradOpNode>> actual_pending_ops;
        for (auto& op : new_op->GradPendingNodes()) {
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
          actual_pending_ops.emplace(op);
        }

        ASSERT_TRUE(expected_pending_ops == actual_pending_ops);
        ASSERT_EQ(expected_pending_ops.count(new_op), 0UL);
      }

      var_wrappers.emplace(x->SharedVar());
      var_wrappers.emplace(x->GradVarBase()->SharedVar());
      var_wrappers.emplace(y->SharedVar());
      var_wrappers.emplace(y->GradVarBase()->SharedVar());
      var_wrappers.emplace(z->SharedVar());
      var_wrappers.emplace(z->GradVarBase()->SharedVar());

      var_bases.emplace(x);
      var_bases.emplace(x->GradVarBase());
      var_bases.emplace(y);
      var_bases.emplace(y->GradVarBase());
      var_bases.emplace(z);
      var_bases.emplace(z->GradVarBase());

      for (auto& op : expected_pending_ops) {
        op_bases.emplace(op);
      }

      if (i == 0) {
        ASSERT_EQ(var_wrapper_num, 0UL);
        ASSERT_EQ(var_base_num, 0UL);
        ASSERT_EQ(op_base_num, 0UL);
        ASSERT_EQ(var_wrappers.size(), 6UL);
        ASSERT_EQ(var_bases.size(), 6UL);
        ASSERT_EQ(op_bases.size(), 0UL);
      } else {
        ASSERT_EQ(var_wrappers.size(), var_wrapper_num + 2);
        ASSERT_EQ(var_bases.size(), var_base_num + 2);
        ASSERT_EQ(op_bases.size(), op_base_num + 1);
      }

      x = z;  // recurrent usage
    }
  }

  for (auto& var : var_wrappers) {
    ASSERT_TRUE(var.expired());
  }

  for (auto& var : var_bases) {
    ASSERT_TRUE(var.expired());
  }

  for (auto& op : op_bases) {
    ASSERT_TRUE(op.expired());
  }
}

TEST(test_tracer, test_var_op_destruction) {
  TestVarOpDestructionMain(platform::CPUPlace());
524
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
525 526 527 528
  TestVarOpDestructionMain(platform::CUDAPlace(0));
#endif
}

J
Jiabin Yang 已提交
529 530 531 532
}  // namespace imperative
}  // namespace paddle

USE_OP(mul);
533
USE_OP(mul_grad);
H
hong 已提交
534 535 536
USE_OP(reduce_sum);
USE_OP(reduce_sum_grad);
USE_OP(elementwise_add);