test_tracer.cc 15.0 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//
// Created by Jiabin on 2019-08-16.
//

#include <paddle/fluid/framework/op_registry.h>
#include <memory>
#include <string>
#include <vector>
#include "gtest/gtest.h"
#include "paddle/fluid/imperative/tracer.h"
25
#include "paddle/fluid/memory/memcpy.h"
J
Jiabin Yang 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

namespace imperative = paddle::imperative;
namespace platform = paddle::platform;
namespace framework = paddle::framework;

namespace paddle {
namespace imperative {

using vb_vector = std::vector<std::shared_ptr<imperative::VarBase>>;

using var_pair = std::pair<std::string, vb_vector>;

TEST(test_tracer, test_trace_op) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<imperative::VarBase> x_in(
      new imperative::VarBase(true, "x_in"));
  std::shared_ptr<imperative::VarBase> y_in(
      new imperative::VarBase(true, "y_in"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(true, "vout"));
  platform::CPUPlace place;
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
  std::vector<int64_t> dims2 = {5, 2};

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
  x_in_tensor->Resize(framework::make_ddim(dims1));
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
  y_in_tensor->Resize(framework::make_ddim(dims2));
  auto* mutable_y = y_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size());

  var_pair x_pair = var_pair("X", vb_vector(1, x_in));
  var_pair y_pair = var_pair("Y", vb_vector(1, y_in));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
  tracer.TraceOp("mul", ins, outs, mul_attr_map, place, true);
  const auto& out_tensor = vout->Var().Get<framework::LoDTensor>();
72
  for (int i = 0; i < vout->Var().Get<framework::LoDTensor>().numel(); i++) {
J
Jiabin Yang 已提交
73 74 75 76
    ASSERT_EQ(out_tensor.data<float>()[i], 20.0);
  }
}

H
hong 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
TEST(test_tracer, test_trace_op_with_backward) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<imperative::VarBase> x_in(
      new imperative::VarBase(true, "x_in"));
  std::shared_ptr<imperative::VarBase> y_in(
      new imperative::VarBase(true, "y_in"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(true, "vout"));
  platform::CPUPlace place;
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
  std::vector<int64_t> dims2 = {5, 2};

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
  x_in_tensor->Resize(framework::make_ddim(dims1));
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
  y_in_tensor->Resize(framework::make_ddim(dims2));
  auto* mutable_y = y_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size());

  var_pair x_pair = var_pair("X", vb_vector(1, x_in));
  var_pair y_pair = var_pair("Y", vb_vector(1, y_in));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
  tracer.TraceOp("mul", ins, outs, mul_attr_map, place, true);
  const auto& out_tensor = vout->Var().Get<framework::LoDTensor>();
111
  for (int i = 0; i < vout->Var().Get<framework::LoDTensor>().numel(); i++) {
H
hong 已提交
112 113 114 115
    ASSERT_EQ(out_tensor.data<float>()[i], 20.0);
  }
}

J
Jiabin Yang 已提交
116 117 118 119 120 121
TEST(test_tracer, test_track_backward_output) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<imperative::VarBase> x_in(
      new imperative::VarBase(true, "x_in"));
  std::shared_ptr<imperative::VarBase> y_in(
122
      new imperative::VarBase(true, "y_in"));
123
  x_in->SetOverridedStopGradient(false);
J
Jiabin Yang 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(true, "vout"));
  platform::CPUPlace place;
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
  std::vector<int64_t> dims2 = {5, 2};

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
  x_in_tensor->Resize(framework::make_ddim(dims1));
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
  y_in_tensor->Resize(framework::make_ddim(dims2));
  auto* mutable_y = y_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size());

  var_pair x_pair = var_pair("X", vb_vector(1, x_in));
  var_pair y_pair = var_pair("Y", vb_vector(1, y_in));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
149 150 151 152
  tracer.TraceOp("mul", ins, outs, mul_attr_map, place, true);
  auto* engine = tracer.GetDefaultEngine();
  ASSERT_NE(engine->GradVars().size(), 0UL);
  ASSERT_NE(engine->GradOps().size(), 0UL);  // trace_backward already ran.
J
Jiabin Yang 已提交
153 154 155 156 157 158 159 160 161 162
}

TEST(test_tracer, test_track_backward_input) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<imperative::VarBase> x_in(
      new imperative::VarBase(true, "x_in"));
  std::shared_ptr<imperative::VarBase> y_in(
      new imperative::VarBase(true, "y_in"));
  std::shared_ptr<imperative::VarBase> vout(
163
      new imperative::VarBase(true, "vout"));
J
Jiabin Yang 已提交
164
  platform::CPUPlace place;
165
  x_in->SetOverridedStopGradient(false);
J
Jiabin Yang 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
  std::vector<int64_t> dims2 = {5, 2};

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
  x_in_tensor->Resize(framework::make_ddim(dims1));
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
  y_in_tensor->Resize(framework::make_ddim(dims2));
  auto* mutable_y = y_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size());

  var_pair x_pair = var_pair("X", vb_vector(1, x_in));
  var_pair y_pair = var_pair("Y", vb_vector(1, y_in));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
188 189 190 191
  tracer.TraceOp("mul", ins, outs, mul_attr_map, place, true);
  auto* engine = tracer.GetDefaultEngine();
  ASSERT_NE(engine->GradVars().size(), 0UL);
  ASSERT_NE(engine->GradOps().size(), 0UL);  // trace_backward already ran.
J
Jiabin Yang 已提交
192
}
193 194 195 196 197 198
#if defined(PADDLE_WITH_CUDA)
TEST(test_tracer, test_trace_op_with_multi_device_inputs) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<imperative::VarBase> x_in(
      new imperative::VarBase(true, "x_in"));
H
hong 已提交
199
  x_in->SetOverridedStopGradient(false);  // force to run backward
200 201
  std::shared_ptr<imperative::VarBase> y_in(
      new imperative::VarBase(true, "y_in"));
H
hong 已提交
202
  y_in->SetOverridedStopGradient(false);
203 204 205 206 207 208
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(true, "vout"));
  platform::CPUPlace place;
  platform::CUDAPlace gpu_place(0);
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
H
hong 已提交
209
  std::vector<int64_t> dims2 = {2, 5};
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
  x_in_tensor->Resize(framework::make_ddim(dims1));
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
  y_in_tensor->Resize(framework::make_ddim(dims2));
  auto* mutable_y = y_in_tensor->mutable_data<float>(gpu_place);
  paddle::memory::Copy(gpu_place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size(), 0);
  var_pair x_pair = var_pair("X", vb_vector(1, x_in));
  var_pair y_pair = var_pair("Y", vb_vector(1, y_in));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
H
hong 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
  tracer.TraceOp("elementwise_add", ins, outs, mul_attr_map, gpu_place, true);

  // run reduce sum
  std::shared_ptr<imperative::VarBase> reduce_sum_out(
      new imperative::VarBase(true, "reduce_sum_out"));
  var_pair reduce_sum_in_pair = var_pair("X", vb_vector(1, vout));
  var_pair reduce_sum_out_pair = var_pair("Out", vb_vector(1, reduce_sum_out));
  imperative::NameVarBaseMap reduce_in = {reduce_sum_in_pair};
  imperative::NameVarBaseMap reduce_out = {reduce_sum_out_pair};
  framework::AttributeMap reduce_attr_map;
  tracer.TraceOp("reduce_sum", reduce_in, reduce_out, reduce_attr_map,
                 gpu_place, true);
  detail::BackwardStrategy back_st;
  imperative::Engine* engine = tracer.GetDefaultEngine();
  engine->Init(reduce_sum_out.get(), back_st);
  engine->Execute();

245 246 247
  framework::LoDTensor rlt;
  framework::TensorCopySync(vout->Var().Get<framework::LoDTensor>(), place,
                            &rlt);
248
  for (int i = 0; i < rlt.numel(); i++) {
H
hong 已提交
249 250 251 252 253 254
    ASSERT_EQ(rlt.data<float>()[i], 4.0);
  }

  framework::LoDTensor out_grad;
  framework::TensorCopySync(vout->GradVar().Get<framework::LoDTensor>(), place,
                            &out_grad);
255
  for (int i = 0; i < out_grad.numel(); ++i) {
H
hong 已提交
256 257 258 259 260 261 262
    ASSERT_EQ(out_grad.data<float>()[i], 1.0);
  }

  framework::LoDTensor x_grad;
  framework::TensorCopySync(x_in->GradVar().Get<framework::LoDTensor>(), place,
                            &x_grad);

263
  for (int i = 0; i < x_grad.numel(); ++i) {
H
hong 已提交
264 265 266 267 268 269 270
    ASSERT_EQ(x_grad.data<float>()[i], 1.0);
  }

  framework::LoDTensor y_grad;
  framework::TensorCopySync(y_in->GradVar().Get<framework::LoDTensor>(), place,
                            &y_grad);

271
  for (int i = 0; i < y_grad.numel(); ++i) {
H
hong 已提交
272
    ASSERT_EQ(y_grad.data<float>()[i], 1.0);
273 274
  }
}
H
hong 已提交
275

276
#endif
277 278 279 280 281 282 283 284 285 286

TEST(test_tracer, test_unique_name_generator) {
  // generate two unique names
  imperative::Tracer tracer;
  auto fc_1 = tracer.GenerateUniqueName("fc");
  auto fc_2 = tracer.GenerateUniqueName("fc");
  ASSERT_STREQ("fc_1", fc_1.c_str());
  ASSERT_STREQ("fc_2", fc_2.c_str());
}

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
TEST(test_tracer, test_current_tracer) {
  // use current_tracer
  auto tracer = std::make_shared<imperative::Tracer>();
  imperative::SetCurrentTracer(tracer);
  auto current_tracer = imperative::GetCurrentTracer();
  ASSERT_EQ(current_tracer, tracer);
}

TEST(test_tracer, test_expected_place) {
  // default expected place is CPUPlace
  imperative::Tracer tracer;
  ASSERT_EQ(platform::is_cpu_place(tracer.ExpectedPlace()), true);
  // set to CUDAPlace
  platform::CUDAPlace gpu_place(0);
  tracer.SetExpectedPlace(gpu_place);
  ASSERT_EQ(platform::is_gpu_place(tracer.ExpectedPlace()), true);
}

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
TEST(test_tracer, test_var_without_grad_var) {
  // Doing an mul
  imperative::Tracer tracer;
  std::shared_ptr<imperative::VarBase> x_in(
      new imperative::VarBase(true, "x_in"));
  x_in->ClearGradVarBase();
  std::shared_ptr<imperative::VarBase> y_in(
      new imperative::VarBase(true, "y_in"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(true, "vout"));
  x_in->SetOverridedStopGradient(false);
  y_in->SetOverridedStopGradient(false);
  platform::CPUPlace place;
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims1 = {2, 5};
  std::vector<int64_t> dims2 = {5, 2};

  auto* x_in_tensor = x_in->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_in_tensor = y_in->MutableVar()->GetMutable<framework::LoDTensor>();
  x_in_tensor->Resize(framework::make_ddim(dims1));
  auto* mutable_x = x_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_x, place, src_data.data(),
                       sizeof(float) * src_data.size());
  y_in_tensor->Resize(framework::make_ddim(dims2));
  auto* mutable_y = y_in_tensor->mutable_data<float>(place);
  paddle::memory::Copy(place, mutable_y, place, src_data.data(),
                       sizeof(float) * src_data.size());

  var_pair x_pair = var_pair("X", vb_vector(1, x_in));
  var_pair y_pair = var_pair("Y", vb_vector(1, y_in));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
  tracer.TraceOp("mul", ins, outs, mul_attr_map, place, true);

  const auto& out_tensor = vout->Var().Get<framework::LoDTensor>();
  for (int i = 0; i < vout->Var().Get<framework::LoDTensor>().numel(); i++) {
    ASSERT_EQ(out_tensor.data<float>()[i], 20.0);
  }

  detail::BackwardStrategy back_st;
  imperative::Engine* engine = tracer.GetDefaultEngine();
  ASSERT_NE(engine->GradVars().size(), 0UL);
  ASSERT_NE(engine->GradOps().size(), 0UL);  // trace_backward already ran.
  engine->Init(vout.get(), back_st);
  engine->Execute();

  // check the grad
  framework::LoDTensor x_grad;
  framework::TensorCopySync(x_in->GradVar().Get<framework::LoDTensor>(), place,
                            &x_grad);

  for (int i = 0; i < x_grad.numel(); ++i) {
    ASSERT_EQ(x_grad.data<float>()[i], 4.0);
  }

  framework::LoDTensor y_grad;
  framework::TensorCopySync(y_in->GradVar().Get<framework::LoDTensor>(), place,
                            &y_grad);

  for (int i = 0; i < y_grad.numel(); ++i) {
    ASSERT_EQ(y_grad.data<float>()[i], 4.0);
  }
}

J
Jiabin Yang 已提交
372 373 374 375
}  // namespace imperative
}  // namespace paddle

USE_OP(mul);
H
hong 已提交
376 377 378
USE_OP(reduce_sum);
USE_OP(reduce_sum_grad);
USE_OP(elementwise_add);