common_sparse_table.cc 20.0 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/distributed/table/common_sparse_table.h"
#include <sstream>
17

T
tangwei12 已提交
18
#include "boost/lexical_cast.hpp"
19 20 21 22 23 24 25 26
#include "glog/logging.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace distributed {
class ValueBlock;
}  // namespace distributed
}  // namespace paddle
T
tangwei12 已提交
27

T
tangwei12 已提交
28 29
#define PSERVER_SAVE_SUFFIX ".shard"
using boost::lexical_cast;
30

T
tangwei12 已提交
31 32 33
namespace paddle {
namespace distributed {

34 35
enum SaveMode { all, base, delta };

T
tangwei12 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
struct Meta {
  std::string param;
  int shard_id;
  std::vector<std::string> names;
  std::vector<int> dims;
  uint64_t count;
  std::unordered_map<std::string, int> dims_map;

  explicit Meta(const std::string& metapath) {
    std::ifstream file(metapath);
    std::string line;
    int num_lines = 0;
    while (std::getline(file, line)) {
      if (StartWith(line, "#")) {
        continue;
      }
      auto pairs = paddle::string::split_string<std::string>(line, "=");
      PADDLE_ENFORCE_EQ(
          pairs.size(), 2,
          paddle::platform::errors::InvalidArgument(
              "info in %s except k=v, but got %s", metapath, line));

      if (pairs[0] == "param") {
        param = pairs[1];
      }
      if (pairs[0] == "shard_id") {
        shard_id = std::stoi(pairs[1]);
      }
      if (pairs[0] == "row_names") {
        names = paddle::string::split_string<std::string>(pairs[1], ",");
      }
      if (pairs[0] == "row_dims") {
        auto dims_strs =
            paddle::string::split_string<std::string>(pairs[1], ",");
        for (auto& str : dims_strs) {
          dims.push_back(std::stoi(str));
        }
      }
      if (pairs[0] == "count") {
        count = std::stoull(pairs[1]);
      }
    }
    for (int x = 0; x < names.size(); ++x) {
      dims_map[names[x]] = dims[x];
    }
  }

  Meta(std::string param, int shard_id, std::vector<std::string> row_names,
       std::vector<int> dims, uint64_t count) {
    this->param = param;
    this->shard_id = shard_id;
    this->names = row_names;
    this->dims = dims;
    this->count = count;
  }

  std::string ToString() {
    std::stringstream ss;
    ss << "param=" << param << "\n";
    ss << "shard_id=" << shard_id << "\n";
    ss << "row_names=" << paddle::string::join_strings(names, ',') << "\n";
    ss << "row_dims=" << paddle::string::join_strings(dims, ',') << "\n";
    ss << "count=" << count << "\n";
    return ss.str();
  }
};

void ProcessALine(const std::vector<std::string>& columns, const Meta& meta,
T
tangwei12 已提交
104
                  const int64_t id, std::vector<std::vector<float>>* values) {
105 106 107
  auto colunmn_size = columns.size();
  auto load_values =
      paddle::string::split_string<std::string>(columns[colunmn_size - 1], ",");
108
  values->reserve(meta.names.size());
T
tangwei12 已提交
109

110 111
  int offset = 0;
  for (int x = 0; x < meta.names.size(); ++x) {
T
tangwei12 已提交
112
    std::vector<float> val;
113 114 115
    auto start = load_values.begin() + offset;
    auto end = load_values.begin() + offset + meta.dims[x];
    PADDLE_ENFORCE_LE(offset + meta.dims[x], load_values.size(),
T
tangwei12 已提交
116
                      paddle::platform::errors::InvalidArgument(
117 118 119
                          "The data format in txt does not meet the field "
                          "requirements defined in meta"));

T
tangwei12 已提交
120 121 122 123 124 125 126 127 128 129 130 131
    std::transform(start, end, std::back_inserter(val), [id](std::string va) {
      float v = 0.0;

      try {
        v = lexical_cast<float>(va);
      } catch (boost::bad_lexical_cast& e) {
        VLOG(0) << "id: " << id << " get unexpected value: " << va
                << " and be reset to: 0.0";
      }
      return v;
    });

T
tangwei12 已提交
132
    values->push_back(val);
133
    offset += meta.dims[x];
T
tangwei12 已提交
134 135 136 137 138
  }
}

int64_t SaveToText(std::ostream* os, std::shared_ptr<ValueBlock> block,
                   const int mode) {
T
Thunderbrook 已提交
139
  int64_t save_num = 0;
T
tangwei12 已提交
140

T
Thunderbrook 已提交
141 142 143 144 145 146
  for (auto& table : block->values_) {
    for (auto& value : table) {
      if (mode == SaveMode::delta && !value.second->need_save_) {
        continue;
      }

T
tangwei12 已提交
147 148
      ++save_num;

T
Thunderbrook 已提交
149
      std::stringstream ss;
T
tangwei12 已提交
150 151
      auto* vs = value.second->data_.data();

T
Thunderbrook 已提交
152
      auto id = value.first;
T
tangwei12 已提交
153

T
Thunderbrook 已提交
154 155 156 157
      ss << id << "\t" << value.second->count_ << "\t"
         << value.second->unseen_days_ << "\t" << value.second->is_entry_
         << "\t";

T
tangwei12 已提交
158 159
      for (int i = 0; i < block->value_length_ - 1; i++) {
        ss << std::to_string(vs[i]) << ",";
T
Thunderbrook 已提交
160
      }
161

T
tangwei12 已提交
162
      ss << std::to_string(vs[block->value_length_ - 1]);
T
Thunderbrook 已提交
163
      ss << "\n";
164

T
Thunderbrook 已提交
165
      os->write(ss.str().c_str(), sizeof(char) * ss.str().size());
166

T
Thunderbrook 已提交
167 168 169
      if (mode == SaveMode::base || mode == SaveMode::delta) {
        value.second->need_save_ = false;
      }
170
    }
T
tangwei12 已提交
171 172
  }

T
Thunderbrook 已提交
173
  return save_num;
T
tangwei12 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187
}

int64_t LoadFromText(const std::string& valuepath, const std::string& metapath,
                     const int pserver_id, const int pserver_num,
                     const int local_shard_num,
                     std::vector<std::shared_ptr<ValueBlock>>* blocks) {
  Meta meta = Meta(metapath);

  int num_lines = 0;
  std::ifstream file(valuepath);
  std::string line;

  while (std::getline(file, line)) {
    auto values = paddle::string::split_string<std::string>(line, "\t");
T
tangwei12 已提交
188
    auto id = lexical_cast<int64_t>(values[0]);
T
tangwei12 已提交
189 190

    if (id % pserver_num != pserver_id) {
191
      VLOG(3) << "will not load " << values[0] << " from " << valuepath
T
tangwei12 已提交
192 193 194 195 196 197 198 199
              << ", please check id distribution";
      continue;
    }

    auto shard_id = id % local_shard_num;
    auto block = blocks->at(shard_id);

    std::vector<std::vector<float>> kvalues;
T
tangwei12 已提交
200
    ProcessALine(values, meta, id, &kvalues);
201 202 203

    block->Init(id, false);

T
Thunderbrook 已提交
204
    VALUE* value_instant = block->GetValue(id);
T
tangwei12 已提交
205

206
    if (values.size() == 5) {
T
tangwei12 已提交
207 208 209 210
      value_instant->count_ = lexical_cast<int>(values[1]);
      value_instant->unseen_days_ = lexical_cast<int>(values[2]);
      value_instant->is_entry_ =
          static_cast<bool>(lexical_cast<int>(values[3]));
211 212 213 214 215 216 217
    }

    std::vector<float*> block_values = block->Get(id, meta.names, meta.dims);
    auto blas = GetBlas<float>();
    for (int x = 0; x < meta.names.size(); ++x) {
      blas.VCOPY(meta.dims[x], kvalues[x].data(), block_values[x]);
    }
T
tangwei12 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231
  }

  return 0;
}

int32_t CommonSparseTable::initialize() {
  _shards_task_pool.resize(task_pool_size_);
  for (int i = 0; i < _shards_task_pool.size(); ++i) {
    _shards_task_pool[i].reset(new ::ThreadPool(1));
  }

  sync = _config.common().sync();
  VLOG(1) << "table " << _config.common().table_name() << " is sync: " << sync;

232 233
  _global_lr = new float(1.0);

T
tangwei12 已提交
234 235 236
  auto common = _config.common();
  int size = static_cast<int>(common.params().size());

T
tangwei12 已提交
237
  size_t offset = 0;
T
tangwei12 已提交
238 239 240
  for (int x = 0; x < size; ++x) {
    auto& varname = common.params()[x];
    auto& dim = common.dims()[x];
T
tangwei12 已提交
241 242 243 244 245 246 247

    value_idx_[varname] = x;
    value_names_.push_back(varname);
    value_dims_.push_back(dim);
    value_offsets_.push_back(offset);
    initializer_attrs_.push_back(common.initializers()[x]);

T
tangwei12 已提交
248 249
    if (varname == "Param") {
      param_dim_ = dim;
T
tangwei12 已提交
250
      param_offset_ = offset;
T
tangwei12 已提交
251
    }
T
tangwei12 已提交
252 253

    offset += dim;
T
tangwei12 已提交
254 255
  }

T
tangwei12 已提交
256 257 258 259 260 261 262 263 264
  initialize_value();
  initialize_optimizer();
  initialize_recorder();
  return 0;
}

int32_t CommonSparseTable::initialize_recorder() { return 0; }

int32_t CommonSparseTable::initialize_value() {
T
tangwei12 已提交
265
  auto common = _config.common();
T
tangwei12 已提交
266
  shard_values_.reserve(task_pool_size_);
T
tangwei12 已提交
267

T
tangwei12 已提交
268
  for (int x = 0; x < task_pool_size_; ++x) {
T
tangwei12 已提交
269 270 271
    auto shard = std::make_shared<ValueBlock>(
        value_names_, value_dims_, value_offsets_, value_idx_,
        initializer_attrs_, common.entry());
T
tangwei12 已提交
272

T
tangwei12 已提交
273 274
    shard_values_.emplace_back(shard);
  }
T
tangwei12 已提交
275 276 277 278 279 280 281 282 283 284

  auto accessor = _config.accessor();
  std::vector<uint64_t> feasigns;

  for (size_t x = 0; x < accessor.fea_dim(); ++x) {
    if (x % _shard_num == _shard_idx) {
      feasigns.push_back(x);
    }
  }

285
  VLOG(3) << "has " << feasigns.size() << " ids need to be pre inited";
T
tangwei12 已提交
286 287 288 289 290 291 292

  auto buckets = bucket(feasigns.size(), 10);
  for (int x = 0; x < 10; ++x) {
    auto bucket_feasigns = buckets[x + 1] - buckets[x];
    std::vector<uint64_t> ids(bucket_feasigns);
    std::copy(feasigns.begin() + buckets[x], feasigns.begin() + buckets[x + 1],
              ids.begin());
293 294 295 296 297

    std::vector<uint32_t> fres;
    fres.resize(ids.size(), 1);

    auto pull_value = PullSparseValue(ids, fres, param_dim_);
T
tangwei12 已提交
298 299
    std::vector<float> pulls;
    pulls.resize(bucket_feasigns * param_dim_);
300
    pull_sparse(pulls.data(), pull_value);
T
tangwei12 已提交
301 302
  }

T
tangwei12 已提交
303 304 305 306 307 308 309 310
  return 0;
}

int32_t CommonSparseTable::initialize_optimizer() {
  auto common = _config.common();
  auto name = common.name();

  if (name == "sgd") {
T
tangwei12 已提交
311 312
    optimizer_ = std::make_shared<SSGD>(value_names_, value_dims_,
                                        value_offsets_, value_idx_);
313
    optimizer_->set_global_lr(_global_lr);
T
tangwei12 已提交
314
  } else if (name == "adam") {
T
tangwei12 已提交
315 316
    optimizer_ = std::make_shared<SAdam>(value_names_, value_dims_,
                                         value_offsets_, value_idx_);
317
    optimizer_->set_global_lr(_global_lr);
T
tangwei12 已提交
318
  } else if (name == "sum") {
T
tangwei12 已提交
319 320
    optimizer_ = std::make_shared<SSUM>(value_names_, value_dims_,
                                        value_offsets_, value_idx_);
T
tangwei12 已提交
321
  } else {
322
    VLOG(3) << "init optimizer failed";
T
tangwei12 已提交
323 324
  }

325
  VLOG(3) << "init optimizer " << name << " done";
T
tangwei12 已提交
326 327 328
  return 0;
}

329 330 331 332 333 334
int32_t CommonSparseTable::set_global_lr(float* lr) {
  _global_lr = lr;
  optimizer_->set_global_lr(_global_lr);
  return 0;
}

T
tangwei12 已提交
335 336 337
int32_t CommonSparseTable::load(const std::string& path,
                                const std::string& param) {
  rwlock_->WRLock();
338
  VLOG(3) << "sparse table load with " << path << " with meta " << param;
T
tangwei12 已提交
339 340 341 342 343 344 345 346 347 348
  LoadFromText(path, param, _shard_idx, _shard_num, task_pool_size_,
               &shard_values_);
  rwlock_->UNLock();
  return 0;
}

int32_t CommonSparseTable::save(const std::string& dirname,
                                const std::string& param) {
  rwlock_->WRLock();
  int mode = std::stoi(param);
349
  VLOG(3) << "sparse table save: " << dirname << " mode: " << mode;
T
tangwei12 已提交
350 351

  auto varname = _config.common().table_name();
352 353
  std::string var_store =
      string::Sprintf("%s/%s%s", dirname, varname, PSERVER_SAVE_SUFFIX);
T
tangwei12 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
  MkDirRecursively(var_store.c_str());

  VLOG(3) << "save " << varname << " in dir: " << var_store << " begin";
  std::vector<std::string> params(_config.common().params().begin(),
                                  _config.common().params().end());
  std::string shard_var_pre =
      string::Sprintf("%s.block%d", varname, _shard_idx);

  std::string value_ = string::Sprintf("%s/%s.txt", var_store, shard_var_pre);

  std::unique_ptr<std::ofstream> value_out(new std::ofstream(value_));

  int64_t total_ins = 0;
  for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
    // save values
T
tangwei12 已提交
369
    total_ins += SaveToText(value_out.get(), shard_values_[shard_id], mode);
T
tangwei12 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
  }
  value_out->close();

  // save meta
  std::stringstream stream;
  stream << "param=" << _config.common().table_name() << "\n";
  stream << "shard_id=" << _shard_idx << "\n";
  stream << "row_names="
         << paddle::string::join_strings(_config.common().params(), ',')
         << "\n";
  stream << "row_dims="
         << paddle::string::join_strings(_config.common().dims(), ',') << "\n";
  stream << "count=" << total_ins << "\n";
  std::string meta_ = string::Sprintf("%s/%s.meta", var_store, shard_var_pre);
  std::unique_ptr<std::ofstream> meta_out(new std::ofstream(meta_));
  meta_out->write(stream.str().c_str(), sizeof(char) * stream.str().size());
  meta_out->close();
  VLOG(3) << "save " << varname << " in dir: " << var_store << " done";
  rwlock_->UNLock();
  return 0;
}

std::pair<int64_t, int64_t> CommonSparseTable::print_table_stat() {
  int64_t feasign_size = 0;
  int64_t mf_size = 0;

T
Thunderbrook 已提交
396 397 398 399
  for (auto& shard : shard_values_) {
    for (auto& table : shard->values_) {
      feasign_size += table.size();
    }
T
tangwei12 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
  }

  return {feasign_size, mf_size};
}

int32_t CommonSparseTable::pour() {
  rwlock_->RDLock();

  std::vector<float> values;
  std::vector<uint64_t> keys;

  keys.reserve(pull_reservoir_.size());
  values.reserve(pull_reservoir_.size() * param_dim_);

  for (auto& val : pull_reservoir_) {
    keys.push_back(val.first);
    auto& reservoir = val.second;
    reservoir.avg();
    std::copy(reservoir.values.begin(), reservoir.values.end(),
              std::back_inserter(values));
  }
  _push_sparse(keys.data(), values.data(), pull_reservoir_.size());

  pull_reservoir_.clear();
  rwlock_->UNLock();
  return 0;
}

428 429
int32_t CommonSparseTable::pull_sparse(float* pull_values,
                                       const PullSparseValue& pull_value) {
T
tangwei12 已提交
430 431
  rwlock_->RDLock();

432 433
  auto shard_num = task_pool_size_;
  std::vector<std::future<int>> tasks(shard_num);
T
tangwei12 已提交
434

435
  for (int shard_id = 0; shard_id < shard_num; ++shard_id) {
T
tangwei12 已提交
436
    tasks[shard_id] = _shards_task_pool[shard_id]->enqueue(
437
        [this, shard_id, shard_num, &pull_value, &pull_values]() -> int {
T
tangwei12 已提交
438
          auto& block = shard_values_[shard_id];
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457

          std::vector<int> offsets;
          pull_value.Fission(shard_id, shard_num, &offsets);

          if (pull_value.is_training_) {
            for (auto& offset : offsets) {
              auto feasign = pull_value.feasigns_[offset];
              auto frequencie = pull_value.frequencies_[offset];
              auto* value = block->Init(feasign, true, frequencie);
              std::copy_n(value + param_offset_, param_dim_,
                          pull_values + param_dim_ * offset);
            }
          } else {
            for (auto& offset : offsets) {
              auto feasign = pull_value.feasigns_[offset];
              auto* value = block->Init(feasign, false);
              std::copy_n(value + param_offset_, param_dim_,
                          pull_values + param_dim_ * offset);
            }
T
tangwei12 已提交
458
          }
T
tangwei12 已提交
459

T
tangwei12 已提交
460 461 462 463 464 465 466 467 468 469 470
          return 0;
        });
  }

  for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
    tasks[shard_id].wait();
  }
  rwlock_->UNLock();
  return 0;
}

T
Thunderbrook 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
int32_t CommonSparseTable::pull_sparse_ptr(char** pull_values,
                                           const uint64_t* keys, size_t num) {
  std::vector<std::vector<uint64_t>> offset_bucket;
  offset_bucket.resize(task_pool_size_);

  for (int x = 0; x < num; ++x) {
    auto y = keys[x] % task_pool_size_;
    offset_bucket[y].push_back(x);
  }

  std::vector<std::future<int>> tasks(task_pool_size_);

  for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
    tasks[shard_id] = _shards_task_pool[shard_id]->enqueue(
        [this, shard_id, &keys, &offset_bucket, &pull_values]() -> int {
          auto& block = shard_values_[shard_id];
          auto& offsets = offset_bucket[shard_id];

          for (int i = 0; i < offsets.size(); ++i) {
            auto offset = offsets[i];
            auto id = keys[offset];
            auto* value = block->InitGet(id);
            // std::copy_n(value + param_offset_, param_dim_,
            //            pull_values + param_dim_ * offset);
T
tangwei12 已提交
495
            pull_values[offset] = reinterpret_cast<char*>(value);
T
Thunderbrook 已提交
496 497 498 499 500 501 502 503 504 505 506 507
          }

          return 0;
        });
  }

  for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
    tasks[shard_id].wait();
  }
  return 0;
}

T
tangwei12 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
int32_t CommonSparseTable::_push_sparse(const uint64_t* keys,
                                        const float* values, size_t num) {
  rwlock_->RDLock();
  std::vector<std::vector<uint64_t>> offset_bucket;
  offset_bucket.resize(task_pool_size_);

  for (int x = 0; x < num; ++x) {
    auto y = keys[x] % task_pool_size_;
    offset_bucket[y].push_back(x);
  }

  std::vector<std::future<int>> tasks(task_pool_size_);

  for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
    tasks[shard_id] = _shards_task_pool[shard_id]->enqueue(
        [this, shard_id, &keys, &values, num, &offset_bucket]() -> int {
          auto& offsets = offset_bucket[shard_id];
          optimizer_->update(keys, values, num, offsets,
                             shard_values_[shard_id].get());
          return 0;
        });
  }

  for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
    tasks[shard_id].wait();
  }
  rwlock_->UNLock();
  return 0;
}

int32_t CommonSparseTable::push_sparse(const uint64_t* keys,
                                       const float* values, size_t num) {
  if (sync) {
    std::future<int> task =
        _shards_task_pool[0]->enqueue([this, &keys, &values, num]() -> int {
          for (int x = 0; x < num; ++x) {
            auto id = keys[x];
            auto has = pull_reservoir_.find(id);

            if (has == pull_reservoir_.end()) {
              pull_reservoir_[id] = ReservoirValue<float>(param_dim_);
            }

            auto& reservoir = pull_reservoir_[id];
            reservoir.add(values + x * param_dim_, param_dim_);
          }
          return 0;
        });
    task.wait();
  } else {
    _push_sparse(keys, values, num);
  }

  return 0;
}

T
Thunderbrook 已提交
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
int32_t CommonSparseTable::push_sparse(const uint64_t* keys,
                                       const float** values, size_t num) {
  _push_sparse(keys, values, num);
  return 0;
}

int32_t CommonSparseTable::_push_sparse(const uint64_t* keys,
                                        const float** values, size_t num) {
  rwlock_->RDLock();
  std::vector<std::vector<uint64_t>> offset_bucket;
  offset_bucket.resize(task_pool_size_);

  for (int x = 0; x < num; ++x) {
    auto y = keys[x] % task_pool_size_;
    offset_bucket[y].push_back(x);
  }

  std::vector<std::future<int>> tasks(task_pool_size_);

  for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
    tasks[shard_id] = _shards_task_pool[shard_id]->enqueue(
        [this, shard_id, &keys, &values, num, &offset_bucket]() -> int {
          auto& offsets = offset_bucket[shard_id];
          for (size_t i = 0; i < offsets.size(); ++i) {
            std::vector<uint64_t> tmp_off = {0};
            optimizer_->update(keys + offsets[i], values[offsets[i]], num,
                               tmp_off, shard_values_[shard_id].get());
          }
          return 0;
        });
  }

  for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
    tasks[shard_id].wait();
  }
  rwlock_->UNLock();
  return 0;
}

T
tangwei12 已提交
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
int32_t CommonSparseTable::push_sparse_param(const uint64_t* keys,
                                             const float* values, size_t num) {
  rwlock_->RDLock();

  std::vector<std::vector<uint64_t>> offset_bucket;
  offset_bucket.resize(task_pool_size_);

  for (int x = 0; x < num; ++x) {
    auto y = keys[x] % task_pool_size_;
    offset_bucket[y].push_back(x);
  }

  std::vector<std::future<int>> tasks(task_pool_size_);

  for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
    tasks[shard_id] = _shards_task_pool[shard_id]->enqueue(
T
tangwei12 已提交
619
        [this, shard_id, &keys, &offset_bucket, &values]() -> int {
T
tangwei12 已提交
620 621 622 623 624 625
          auto& block = shard_values_[shard_id];
          auto& offsets = offset_bucket[shard_id];

          for (int i = 0; i < offsets.size(); ++i) {
            auto offset = offsets[i];
            auto id = keys[offset];
626
            auto* value = block->Init(id, false);
T
tangwei12 已提交
627 628
            std::copy_n(values + param_dim_ * offset, param_dim_,
                        value + param_offset_);
629
            block->SetEntry(id, true);
T
tangwei12 已提交
630 631 632 633 634 635 636 637 638 639 640 641 642 643
          }
          return 0;
        });
  }

  for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
    tasks[shard_id].wait();
  }
  rwlock_->UNLock();
  return 0;
}

int32_t CommonSparseTable::flush() { return 0; }

644 645 646
int32_t CommonSparseTable::shrink(const std::string& param) {
  rwlock_->WRLock();
  int threshold = std::stoi(param);
647
  VLOG(3) << "sparse table shrink: " << threshold;
648 649 650

  for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
    // shrink
651
    VLOG(4) << shard_id << " " << task_pool_size_ << " begin shrink";
652 653 654
    shard_values_[shard_id]->Shrink(threshold);
  }
  rwlock_->UNLock();
T
tangwei12 已提交
655 656
  return 0;
}
657

T
tangwei12 已提交
658 659 660 661
void CommonSparseTable::clear() { VLOG(0) << "clear coming soon"; }

}  // namespace distributed
}  // namespace paddle