common_sparse_table.cc 16.7 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/distributed/table/common_sparse_table.h"
16

T
tangwei12 已提交
17
#include <sstream>
18 19 20 21 22 23 24 25 26

#include "glog/logging.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace distributed {
class ValueBlock;
}  // namespace distributed
}  // namespace paddle
T
tangwei12 已提交
27

28
#define PSERVER_SAVE_SUFFIX "_txt"
29

T
tangwei12 已提交
30 31 32
namespace paddle {
namespace distributed {

33 34
enum SaveMode { all, base, delta };

T
tangwei12 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
struct Meta {
  std::string param;
  int shard_id;
  std::vector<std::string> names;
  std::vector<int> dims;
  uint64_t count;
  std::unordered_map<std::string, int> dims_map;

  explicit Meta(const std::string& metapath) {
    std::ifstream file(metapath);
    std::string line;
    int num_lines = 0;
    while (std::getline(file, line)) {
      if (StartWith(line, "#")) {
        continue;
      }
      auto pairs = paddle::string::split_string<std::string>(line, "=");
      PADDLE_ENFORCE_EQ(
          pairs.size(), 2,
          paddle::platform::errors::InvalidArgument(
              "info in %s except k=v, but got %s", metapath, line));

      if (pairs[0] == "param") {
        param = pairs[1];
      }
      if (pairs[0] == "shard_id") {
        shard_id = std::stoi(pairs[1]);
      }
      if (pairs[0] == "row_names") {
        names = paddle::string::split_string<std::string>(pairs[1], ",");
      }
      if (pairs[0] == "row_dims") {
        auto dims_strs =
            paddle::string::split_string<std::string>(pairs[1], ",");
        for (auto& str : dims_strs) {
          dims.push_back(std::stoi(str));
        }
      }
      if (pairs[0] == "count") {
        count = std::stoull(pairs[1]);
      }
    }
    for (int x = 0; x < names.size(); ++x) {
      dims_map[names[x]] = dims[x];
    }
  }

  Meta(std::string param, int shard_id, std::vector<std::string> row_names,
       std::vector<int> dims, uint64_t count) {
    this->param = param;
    this->shard_id = shard_id;
    this->names = row_names;
    this->dims = dims;
    this->count = count;
  }

  std::string ToString() {
    std::stringstream ss;
    ss << "param=" << param << "\n";
    ss << "shard_id=" << shard_id << "\n";
    ss << "row_names=" << paddle::string::join_strings(names, ',') << "\n";
    ss << "row_dims=" << paddle::string::join_strings(dims, ',') << "\n";
    ss << "count=" << count << "\n";
    return ss.str();
  }
};

void ProcessALine(const std::vector<std::string>& columns, const Meta& meta,
                  std::vector<std::vector<float>>* values) {
104 105 106
  auto colunmn_size = columns.size();
  auto load_values =
      paddle::string::split_string<std::string>(columns[colunmn_size - 1], ",");
107
  values->reserve(meta.names.size());
T
tangwei12 已提交
108

109 110
  int offset = 0;
  for (int x = 0; x < meta.names.size(); ++x) {
T
tangwei12 已提交
111
    std::vector<float> val;
112 113 114
    auto start = load_values.begin() + offset;
    auto end = load_values.begin() + offset + meta.dims[x];
    PADDLE_ENFORCE_LE(offset + meta.dims[x], load_values.size(),
T
tangwei12 已提交
115
                      paddle::platform::errors::InvalidArgument(
116 117 118 119 120
                          "The data format in txt does not meet the field "
                          "requirements defined in meta"));

    std::transform(start, end, std::back_inserter(val),
                   [](std::string va) { return std::stof(va); });
T
tangwei12 已提交
121
    values->push_back(val);
122
    offset += meta.dims[x];
T
tangwei12 已提交
123 124 125 126 127
  }
}

int64_t SaveToText(std::ostream* os, std::shared_ptr<ValueBlock> block,
                   const int mode) {
128
  int64_t not_save_num = 0;
T
tangwei12 已提交
129
  for (auto value : block->values_) {
130 131 132 133 134
    if (mode == SaveMode::delta && !value.second->need_save_) {
      not_save_num++;
      continue;
    }

T
tangwei12 已提交
135
    auto* vs = value.second->data_.data();
T
tangwei12 已提交
136 137
    std::stringstream ss;
    auto id = value.first;
138 139
    ss << id << "\t" << value.second->count_ << "\t"
       << value.second->unseen_days_ << "\t" << value.second->is_entry_ << "\t";
T
tangwei12 已提交
140 141 142 143

    for (int i = 0; i < block->value_length_; i++) {
      ss << vs[i];
      ss << ",";
T
tangwei12 已提交
144
    }
T
tangwei12 已提交
145

T
tangwei12 已提交
146 147 148
    ss << "\n";

    os->write(ss.str().c_str(), sizeof(char) * ss.str().size());
149 150 151 152

    if (mode == SaveMode::base || mode == SaveMode::delta) {
      value.second->need_save_ = false;
    }
T
tangwei12 已提交
153 154
  }

155
  return block->values_.size() - not_save_num;
T
tangwei12 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
}

int64_t LoadFromText(const std::string& valuepath, const std::string& metapath,
                     const int pserver_id, const int pserver_num,
                     const int local_shard_num,
                     std::vector<std::shared_ptr<ValueBlock>>* blocks) {
  Meta meta = Meta(metapath);

  int num_lines = 0;
  std::ifstream file(valuepath);
  std::string line;

  while (std::getline(file, line)) {
    auto values = paddle::string::split_string<std::string>(line, "\t");
    auto id = std::stoull(values[0]);

    if (id % pserver_num != pserver_id) {
173
      VLOG(3) << "will not load " << values[0] << " from " << valuepath
T
tangwei12 已提交
174 175 176 177 178 179 180 181 182
              << ", please check id distribution";
      continue;
    }

    auto shard_id = id % local_shard_num;
    auto block = blocks->at(shard_id);

    std::vector<std::vector<float>> kvalues;
    ProcessALine(values, meta, &kvalues);
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197

    block->Init(id, false);

    auto value_instant = block->GetValue(id);
    if (values.size() == 5) {
      value_instant->count_ = std::stoi(values[1]);
      value_instant->unseen_days_ = std::stoi(values[2]);
      value_instant->is_entry_ = static_cast<bool>(std::stoi(values[3]));
    }

    std::vector<float*> block_values = block->Get(id, meta.names, meta.dims);
    auto blas = GetBlas<float>();
    for (int x = 0; x < meta.names.size(); ++x) {
      blas.VCOPY(meta.dims[x], kvalues[x].data(), block_values[x]);
    }
T
tangwei12 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211
  }

  return 0;
}

int32_t CommonSparseTable::initialize() {
  _shards_task_pool.resize(task_pool_size_);
  for (int i = 0; i < _shards_task_pool.size(); ++i) {
    _shards_task_pool[i].reset(new ::ThreadPool(1));
  }

  sync = _config.common().sync();
  VLOG(1) << "table " << _config.common().table_name() << " is sync: " << sync;

212 213
  _global_lr = new float(1.0);

T
tangwei12 已提交
214 215 216
  auto common = _config.common();
  int size = static_cast<int>(common.params().size());

T
tangwei12 已提交
217
  size_t offset = 0;
T
tangwei12 已提交
218 219 220
  for (int x = 0; x < size; ++x) {
    auto& varname = common.params()[x];
    auto& dim = common.dims()[x];
T
tangwei12 已提交
221 222 223 224 225 226 227

    value_idx_[varname] = x;
    value_names_.push_back(varname);
    value_dims_.push_back(dim);
    value_offsets_.push_back(offset);
    initializer_attrs_.push_back(common.initializers()[x]);

T
tangwei12 已提交
228 229
    if (varname == "Param") {
      param_dim_ = dim;
T
tangwei12 已提交
230
      param_offset_ = offset;
T
tangwei12 已提交
231
    }
T
tangwei12 已提交
232 233

    offset += dim;
T
tangwei12 已提交
234 235
  }

T
tangwei12 已提交
236 237 238 239 240 241 242 243 244
  initialize_value();
  initialize_optimizer();
  initialize_recorder();
  return 0;
}

int32_t CommonSparseTable::initialize_recorder() { return 0; }

int32_t CommonSparseTable::initialize_value() {
T
tangwei12 已提交
245
  auto common = _config.common();
T
tangwei12 已提交
246
  shard_values_.reserve(task_pool_size_);
T
tangwei12 已提交
247

T
tangwei12 已提交
248
  for (int x = 0; x < task_pool_size_; ++x) {
T
tangwei12 已提交
249 250 251
    auto shard = std::make_shared<ValueBlock>(
        value_names_, value_dims_, value_offsets_, value_idx_,
        initializer_attrs_, common.entry());
T
tangwei12 已提交
252

T
tangwei12 已提交
253 254
    shard_values_.emplace_back(shard);
  }
T
tangwei12 已提交
255 256 257 258 259 260 261 262 263 264 265

  auto accessor = _config.accessor();

  std::vector<uint64_t> feasigns;

  for (size_t x = 0; x < accessor.fea_dim(); ++x) {
    if (x % _shard_num == _shard_idx) {
      feasigns.push_back(x);
    }
  }

266
  VLOG(3) << "has " << feasigns.size() << " ids need to be pre inited";
T
tangwei12 已提交
267 268 269 270 271 272 273 274 275 276 277 278

  auto buckets = bucket(feasigns.size(), 10);
  for (int x = 0; x < 10; ++x) {
    auto bucket_feasigns = buckets[x + 1] - buckets[x];
    std::vector<uint64_t> ids(bucket_feasigns);
    std::copy(feasigns.begin() + buckets[x], feasigns.begin() + buckets[x + 1],
              ids.begin());
    std::vector<float> pulls;
    pulls.resize(bucket_feasigns * param_dim_);
    pull_sparse(pulls.data(), ids.data(), bucket_feasigns);
  }

T
tangwei12 已提交
279 280 281 282 283 284 285 286
  return 0;
}

int32_t CommonSparseTable::initialize_optimizer() {
  auto common = _config.common();
  auto name = common.name();

  if (name == "sgd") {
T
tangwei12 已提交
287 288
    optimizer_ = std::make_shared<SSGD>(value_names_, value_dims_,
                                        value_offsets_, value_idx_);
289
    optimizer_->set_global_lr(_global_lr);
T
tangwei12 已提交
290
  } else if (name == "adam") {
T
tangwei12 已提交
291 292
    optimizer_ = std::make_shared<SAdam>(value_names_, value_dims_,
                                         value_offsets_, value_idx_);
293
    optimizer_->set_global_lr(_global_lr);
T
tangwei12 已提交
294
  } else if (name == "sum") {
T
tangwei12 已提交
295 296
    optimizer_ = std::make_shared<SSUM>(value_names_, value_dims_,
                                        value_offsets_, value_idx_);
T
tangwei12 已提交
297
  } else {
298
    VLOG(3) << "init optimizer failed";
T
tangwei12 已提交
299 300
  }

301
  VLOG(3) << "init optimizer " << name << " done";
T
tangwei12 已提交
302 303 304
  return 0;
}

305 306 307 308 309 310
int32_t CommonSparseTable::set_global_lr(float* lr) {
  _global_lr = lr;
  optimizer_->set_global_lr(_global_lr);
  return 0;
}

T
tangwei12 已提交
311 312 313
int32_t CommonSparseTable::load(const std::string& path,
                                const std::string& param) {
  rwlock_->WRLock();
314
  VLOG(3) << "sparse table load with " << path << " with meta " << param;
T
tangwei12 已提交
315 316 317 318 319 320 321 322 323 324
  LoadFromText(path, param, _shard_idx, _shard_num, task_pool_size_,
               &shard_values_);
  rwlock_->UNLock();
  return 0;
}

int32_t CommonSparseTable::save(const std::string& dirname,
                                const std::string& param) {
  rwlock_->WRLock();
  int mode = std::stoi(param);
325
  VLOG(3) << "sparse table save: " << dirname << " mode: " << mode;
T
tangwei12 已提交
326 327

  auto varname = _config.common().table_name();
328 329
  std::string var_store =
      string::Sprintf("%s/%s%s", dirname, varname, PSERVER_SAVE_SUFFIX);
T
tangwei12 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
  MkDirRecursively(var_store.c_str());

  VLOG(3) << "save " << varname << " in dir: " << var_store << " begin";
  std::vector<std::string> params(_config.common().params().begin(),
                                  _config.common().params().end());
  std::string shard_var_pre =
      string::Sprintf("%s.block%d", varname, _shard_idx);

  std::string value_ = string::Sprintf("%s/%s.txt", var_store, shard_var_pre);

  std::unique_ptr<std::ofstream> value_out(new std::ofstream(value_));

  int64_t total_ins = 0;
  for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
    // save values
T
tangwei12 已提交
345
    total_ins += SaveToText(value_out.get(), shard_values_[shard_id], mode);
T
tangwei12 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
  }
  value_out->close();

  // save meta
  std::stringstream stream;
  stream << "param=" << _config.common().table_name() << "\n";
  stream << "shard_id=" << _shard_idx << "\n";
  stream << "row_names="
         << paddle::string::join_strings(_config.common().params(), ',')
         << "\n";
  stream << "row_dims="
         << paddle::string::join_strings(_config.common().dims(), ',') << "\n";
  stream << "count=" << total_ins << "\n";
  std::string meta_ = string::Sprintf("%s/%s.meta", var_store, shard_var_pre);
  std::unique_ptr<std::ofstream> meta_out(new std::ofstream(meta_));
  meta_out->write(stream.str().c_str(), sizeof(char) * stream.str().size());
  meta_out->close();
  VLOG(3) << "save " << varname << " in dir: " << var_store << " done";
  rwlock_->UNLock();
  return 0;
}

std::pair<int64_t, int64_t> CommonSparseTable::print_table_stat() {
  int64_t feasign_size = 0;
  int64_t mf_size = 0;

  for (auto& value : shard_values_) {
    feasign_size += value->values_.size();
  }

  return {feasign_size, mf_size};
}

int32_t CommonSparseTable::pour() {
  rwlock_->RDLock();

  std::vector<float> values;
  std::vector<uint64_t> keys;

  keys.reserve(pull_reservoir_.size());
  values.reserve(pull_reservoir_.size() * param_dim_);

  for (auto& val : pull_reservoir_) {
    keys.push_back(val.first);
    auto& reservoir = val.second;
    reservoir.avg();
    std::copy(reservoir.values.begin(), reservoir.values.end(),
              std::back_inserter(values));
  }
  _push_sparse(keys.data(), values.data(), pull_reservoir_.size());

  pull_reservoir_.clear();
  rwlock_->UNLock();
  return 0;
}

int32_t CommonSparseTable::pull_sparse(float* pull_values, const uint64_t* keys,
                                       size_t num) {
  rwlock_->RDLock();

  std::vector<std::vector<uint64_t>> offset_bucket;
  offset_bucket.resize(task_pool_size_);

  for (int x = 0; x < num; ++x) {
    auto y = keys[x] % task_pool_size_;
    offset_bucket[y].push_back(x);
  }

  std::vector<std::future<int>> tasks(task_pool_size_);

  for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
    tasks[shard_id] = _shards_task_pool[shard_id]->enqueue(
T
tangwei12 已提交
418
        [this, shard_id, &keys, &offset_bucket, &pull_values]() -> int {
T
tangwei12 已提交
419 420 421 422 423 424
          auto& block = shard_values_[shard_id];
          auto& offsets = offset_bucket[shard_id];

          for (int i = 0; i < offsets.size(); ++i) {
            auto offset = offsets[i];
            auto id = keys[offset];
425
            auto* value = block->Init(id);
T
tangwei12 已提交
426 427
            std::copy_n(value + param_offset_, param_dim_,
                        pull_values + param_dim_ * offset);
T
tangwei12 已提交
428
          }
T
tangwei12 已提交
429

T
tangwei12 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
          return 0;
        });
  }

  for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
    tasks[shard_id].wait();
  }
  rwlock_->UNLock();
  return 0;
}

int32_t CommonSparseTable::_push_sparse(const uint64_t* keys,
                                        const float* values, size_t num) {
  rwlock_->RDLock();
  std::vector<std::vector<uint64_t>> offset_bucket;
  offset_bucket.resize(task_pool_size_);

  for (int x = 0; x < num; ++x) {
    auto y = keys[x] % task_pool_size_;
    offset_bucket[y].push_back(x);
  }

  std::vector<std::future<int>> tasks(task_pool_size_);

  for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
    tasks[shard_id] = _shards_task_pool[shard_id]->enqueue(
        [this, shard_id, &keys, &values, num, &offset_bucket]() -> int {
          auto& offsets = offset_bucket[shard_id];
          optimizer_->update(keys, values, num, offsets,
                             shard_values_[shard_id].get());
          return 0;
        });
  }

  for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
    tasks[shard_id].wait();
  }
  rwlock_->UNLock();
  return 0;
}

int32_t CommonSparseTable::push_sparse(const uint64_t* keys,
                                       const float* values, size_t num) {
  if (sync) {
    std::future<int> task =
        _shards_task_pool[0]->enqueue([this, &keys, &values, num]() -> int {
          for (int x = 0; x < num; ++x) {
            auto id = keys[x];
            auto has = pull_reservoir_.find(id);

            if (has == pull_reservoir_.end()) {
              pull_reservoir_[id] = ReservoirValue<float>(param_dim_);
            }

            auto& reservoir = pull_reservoir_[id];
            reservoir.add(values + x * param_dim_, param_dim_);
          }
          return 0;
        });
    task.wait();
  } else {
    _push_sparse(keys, values, num);
  }

  return 0;
}

int32_t CommonSparseTable::push_sparse_param(const uint64_t* keys,
                                             const float* values, size_t num) {
  rwlock_->RDLock();

  std::vector<std::vector<uint64_t>> offset_bucket;
  offset_bucket.resize(task_pool_size_);

  for (int x = 0; x < num; ++x) {
    auto y = keys[x] % task_pool_size_;
    offset_bucket[y].push_back(x);
  }

  std::vector<std::future<int>> tasks(task_pool_size_);

  for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
    tasks[shard_id] = _shards_task_pool[shard_id]->enqueue(
T
tangwei12 已提交
513
        [this, shard_id, &keys, &offset_bucket, &values]() -> int {
T
tangwei12 已提交
514 515 516 517 518 519
          auto& block = shard_values_[shard_id];
          auto& offsets = offset_bucket[shard_id];

          for (int i = 0; i < offsets.size(); ++i) {
            auto offset = offsets[i];
            auto id = keys[offset];
520
            auto* value = block->Init(id, false);
T
tangwei12 已提交
521 522
            std::copy_n(values + param_dim_ * offset, param_dim_,
                        value + param_offset_);
523
            block->SetEntry(id, true);
T
tangwei12 已提交
524 525 526 527 528 529 530 531 532 533 534 535 536 537
          }
          return 0;
        });
  }

  for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
    tasks[shard_id].wait();
  }
  rwlock_->UNLock();
  return 0;
}

int32_t CommonSparseTable::flush() { return 0; }

538 539 540
int32_t CommonSparseTable::shrink(const std::string& param) {
  rwlock_->WRLock();
  int threshold = std::stoi(param);
541
  VLOG(3) << "sparse table shrink: " << threshold;
542 543 544

  for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
    // shrink
545
    VLOG(4) << shard_id << " " << task_pool_size_ << " begin shrink";
546 547 548
    shard_values_[shard_id]->Shrink(threshold);
  }
  rwlock_->UNLock();
T
tangwei12 已提交
549 550
  return 0;
}
551

T
tangwei12 已提交
552 553 554 555
void CommonSparseTable::clear() { VLOG(0) << "clear coming soon"; }

}  // namespace distributed
}  // namespace paddle