distribute_transpiler.py 52.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
typhoonzero 已提交
15
from __future__ import print_function
16

T
tangwei12 已提交
17
import os
T
typhoonzero 已提交
18
import math
19 20

import distributed_splitter as splitter
Y
Yancey 已提交
21
from .. import core, framework
T
typhoonzero 已提交
22 23 24
from ..framework import Program, default_main_program, \
                        default_startup_program, \
                        Variable, Parameter, grad_var_name
25 26 27 28

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
RPC_CLIENT_VAR_NAME = "RPC_CLIENT_VAR"
T
done  
typhoonzero 已提交
29

T
tangwei12 已提交
30 31 32 33
# for checkpoint
SUCCESS = "_SUCCESS"
SERIAL_VAR_NAME = "SERIAL_NUMBER"

T
done  
typhoonzero 已提交
34

T
typhoonzero 已提交
35 36 37 38 39 40
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
41

T
typhoonzero 已提交
42 43
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
44 45


46
class UnionFind(object):
47
    """ Union-find data structure.
48

49
    Union-find is a data structure that keeps track of a set of elements partitioned
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    into a number of disjoint (non-overlapping) subsets.

    Reference:
    https://en.wikipedia.org/wiki/Disjoint-set_data_structure

    Args:
      elements(list): The initialize element list.
    """

    def __init__(self, elementes=None):
        self._parents = []  # index -> parent index
        self._index = {}  # element -> index
        self._curr_idx = 0
        if not elementes:
            elementes = []
        for ele in elementes:
            self._parents.append(self._curr_idx)
            self._index.update({ele: self._curr_idx})
            self._curr_idx += 1

    def find(self, x):
        # Find the root index of given element x,
        # execute the path compress while findind the root index
        if not x in self._index:
            return -1
        idx = self._index[x]
        while idx != self._parents[idx]:
            t = self._parents[idx]
            self._parents[idx] = self._parents[t]
            idx = t
        return idx

    def union(self, x, y):
        # Union two given element
        x_root = self.find(x)
        y_root = self.find(y)

        if x_root == y_root:
            return
        self._parents[x_root] = y_root

    def is_connected(self, x, y):
        # If two given elements have the same root index,
        # then they are connected.
        return self.find(x) == self.find(y)


97 98 99 100
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


101
def split_dense_variable(var_list, service_count, min_block_size=8192):
T
typhoonzero 已提交
102
    """
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit). 

    Args:
        var_list (list): List of variables.
        service_count (int): Numel of pserver services. A pserver may have two
            or more listening ports.
        min_block_size (int): Minimum splitted block size.
    Returns:
        blocks (list[(varname, block_id, current_block_size)]): A list 
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
119 120 121
    """
    blocks = []
    for var in var_list:
122
        split_count = service_count
T
typhoonzero 已提交
123 124 125 126
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
127
        if max_pserver_count < service_count:
T
typhoonzero 已提交
128 129 130 131 132 133 134 135 136
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
137
        # update split_count after aligning
T
typhoonzero 已提交
138 139 140 141 142 143 144 145 146
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


147 148 149 150 151 152 153 154 155 156
def delete_ops(block, ops):
    try:
        start = list(block.ops).index(ops[0])
        end = list(block.ops).index(ops[-1])
        [block.remove_op(start) for _ in xrange(end - start + 1)]
    except Exception, e:
        raise e
    block.program.sync_with_cpp()


T
done  
typhoonzero 已提交
157 158
class DistributeTranspiler:
    def transpile(self,
T
typhoonzero 已提交
159
                  trainer_id,
T
done  
typhoonzero 已提交
160 161 162
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
Q
tmp  
qiaolongfei 已提交
163
                  split_method=splitter.round_robin,
T
tangwei12 已提交
164 165
                  sync_mode=True,
                  checkpoint_dir=None):
T
done  
typhoonzero 已提交
166
        """
T
typhoonzero 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
        Transpile the program to distributed data-parallelism programs.
        The main_program will be transformed to use a remote parameter server
        to do parameter optimization. And the optimization graph will be put
        into a parameter server program.

        Use different methods to split trainable variables to different
        parameter servers.

        Steps to transpile trainer:
        1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
        2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
        3. modify trainer program add split_op to each grad variable.
        4. append send_op to send splited variables to server and fetch
            params(splited blocks or origin param) from server.
        5. append concat_op to merge splited blocks to update local weights.

        Steps to transpile pserver:
        1. create new program for parameter server.
        2. create params and grad variables that assigned to current server instance.
        3. create a sub-block in the server side program
        4. append ops that should run on current server instance.
        5. add listen_and_serv op

        :param trainer_id: one unique id for each trainer in a job.
        :type trainer_id: int
        :param program: program to transpile, default is default_main_program
        :type program: Program
        :param pservers: parameter server endpoints like "m1:6174,m2:6174"
        :type pservers: string
        :param trainers: total number of workers/trainers in the job
        :type trainers: int
        :param split_method: A function to determin how to split variables
            to different servers equally.
        :type split_method: function
        :type sync_mode: boolean default True
        :param sync_mode: if sync_mode is set True, it means that dist transpiler
        will transpile the program into sync_mode pserver and trainer program.
T
done  
typhoonzero 已提交
204
        """
T
typhoonzero 已提交
205
        assert (callable(split_method))
T
done  
typhoonzero 已提交
206 207
        if program is None:
            program = default_main_program()
208 209
        self.origin_program = program
        self.trainer_num = trainers
Q
tmp  
qiaolongfei 已提交
210
        self.sync_mode = sync_mode
T
typhoonzero 已提交
211 212 213 214
        # TODO(typhoonzero): currently trainer_id is fetched from cluster system
        # like Kubernetes, we should port this to use etcd later when developing
        # fluid distributed training with fault-tolerance.
        self.trainer_id = trainer_id
T
typhoonzero 已提交
215
        pserver_endpoints = pservers.split(",")
216
        self.pserver_endpoints = pserver_endpoints
Y
Yancey1989 已提交
217
        self.optimize_ops, params_grads = self._get_optimize_pass()
218

T
tangwei12 已提交
219 220 221 222 223
        # is_chief (no.0 triner) for checkpoint
        # the no.0 trainer will save all variables and its own reader offset to checkpoint
        # other trianers will save its own reader offset to checkpoint
        self.is_chief = trainer_id == 0

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
                if op.attrs['is_distributed'] is True:
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        self.has_distributed_lookup_table = len(
            distributed_lookup_table_ops) > 0
T
typhoonzero 已提交
245

246 247
        # step1: For large parameters and gradients, split them into smaller
        # blocks.
T
typhoonzero 已提交
248 249 250 251 252 253 254 255
        param_list = []
        grad_list = []
        for p, g in params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            param_list.append(p)
            grad_list.append(g)
256 257 258 259 260 261 262

        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
T
typhoonzero 已提交
263
                if grad.name != grad_var_name(self.table_name)
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            self.table_grad_list = [
                program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, trainer_id, index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(len(self.pserver_endpoints))
            ]

T
typhoonzero 已提交
280 281
        grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
        param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
282 283
        # step2: Create new vars for the parameters and gradients blocks and
        # add ops to do the split.
T
typhoonzero 已提交
284
        grad_var_mapping = self._append_split_op(program, grad_blocks)
285 286
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
287

288 289
        # step3: Add gradients as send op inputs and parameters as send
        # op outputs.
T
typhoonzero 已提交
290
        send_inputs = []
T
typhoonzero 已提交
291
        send_outputs = []
T
typhoonzero 已提交
292 293 294
        for b in grad_blocks:  # append by order
            varname, block_id, _ = b.split(":")
            send_inputs.append(grad_var_mapping[varname][int(block_id)])
295

T
typhoonzero 已提交
296 297 298
        for b in param_blocks:
            varname, block_id, _ = b.split(":")
            send_outputs.append(param_var_mapping[varname][int(block_id)])
299

300 301
        # let send_op know which endpoint to send which var to, eplist has the same
        # order as send_inputs.
T
typhoonzero 已提交
302
        eplist = split_method(send_inputs, pserver_endpoints)
303
        # create mapping of endpoint -> split var to create pserver side program
T
typhoonzero 已提交
304 305 306 307 308 309 310 311
        self.param_grad_ep_mapping = dict()
        for i, ep in enumerate(eplist):
            param = send_outputs[i]
            grad = send_inputs[i]
            if not self.param_grad_ep_mapping.has_key(ep):
                self.param_grad_ep_mapping[ep] = {"params": [], "grads": []}
            self.param_grad_ep_mapping[ep]["params"].append(param)
            self.param_grad_ep_mapping[ep]["grads"].append(grad)
T
typhoonzero 已提交
312

T
typhoonzero 已提交
313
        rpc_client_var = program.global_block().create_var(
314
            name=RPC_CLIENT_VAR_NAME,
T
typhoonzero 已提交
315
            persistable=True,
T
typhoonzero 已提交
316
            type=core.VarDesc.VarType.RAW)
T
typhoonzero 已提交
317

318
        # create send_op
T
typhoonzero 已提交
319
        program.global_block().append_op(
T
typhoonzero 已提交
320 321
            type="send",
            inputs={"X": send_inputs},
T
typhoonzero 已提交
322 323
            outputs={"Out": send_outputs,
                     "RPCClient": rpc_client_var},
Q
qiaolongfei 已提交
324 325 326 327 328
            attrs={
                "endpoints": pserver_endpoints,
                "epmap": eplist,
                "sync_mode": self.sync_mode
            })
T
tangwei12 已提交
329

T
tangwei12 已提交
330 331 332 333 334
        if checkpoint_dir and self.is_chief:
            program.global_block().create_var(
                name=SERIAL_VAR_NAME,
                persistable=True,
                type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
335

T
tangwei12 已提交
336 337 338 339
            save_vars = []
            for var in self.origin_program.list_vars():
                if self._is_persistable(var):
                    save_vars.append(var.name)
T
tangwei12 已提交
340

T
tangwei12 已提交
341 342 343 344 345
            program.global_block().append_op(
                type="checkpoint_save",
                inputs={"X": save_vars},
                attrs={"overwrite": True,
                       "dir": checkpoint_dir})
T
tangwei12 已提交
346

347
        # step4: Concat the parameters splits together after recv.
T
typhoonzero 已提交
348
        for varname, splited_var in param_var_mapping.iteritems():
T
typhoonzero 已提交
349 350
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
351
            orig_param = program.global_block().vars[varname]
T
typhoonzero 已提交
352
            program.global_block().append_op(
T
typhoonzero 已提交
353
                type="concat",
T
typhoonzero 已提交
354
                inputs={"X": splited_var},
T
typhoonzero 已提交
355
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
356
                attrs={"axis": 0})
T
typhoonzero 已提交
357

358 359 360 361 362 363
        if self.has_distributed_lookup_table:
            self._replace_lookup_table_op_with_prefetch(program, rpc_client_var,
                                                        eplist)
            self._split_table_grad_and_add_send_vars(program, rpc_client_var,
                                                     pserver_endpoints)

T
typhoonzero 已提交
364 365
    def get_trainer_program(self):
        # remove optimize ops and add a send op to main_program
366
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
367
        # FIXME(typhoonzero): serialize once will fix error occurs when clone.
368 369
        self.origin_program.__str__()
        return self.origin_program
T
typhoonzero 已提交
370 371 372 373

    def get_pserver_program(self, endpoint):
        """
        Get pserver side program using the endpoint.
374
        TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
T
typhoonzero 已提交
375 376 377 378 379 380
        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch.
        """
        # step1
        pserver_program = Program()
381
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
382 383 384 385 386 387 388 389
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
390 391 392 393 394 395

            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
396 397 398 399 400 401 402 403 404
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
405
            if self.sync_mode and self.trainer_num > 1:
406
                for trainer_id in xrange(self.trainer_num):
T
typhoonzero 已提交
407 408 409 410 411 412 413 414 415
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
416

Q
qiaolongfei 已提交
417
        # step 3
418
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
419 420 421
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
422
        # step 3.2
T
typhoonzero 已提交
423 424 425 426 427 428
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
            if self._is_opt_op(op) and self._is_opt_op_on_pserver(endpoint, op):
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
429
        # step 3.3
T
typhoonzero 已提交
430
        # Iterate through the ops, and if an op and the optimize ops
431
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
432
        # append it into the sub program.
T
typhoonzero 已提交
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448

        # We try to put optimization program run parallelly, assume
        # optimization program always looks like:
        #
        # prevop -> prevop -> opt op -> following op -> following op; ->
        # prevop -> prevop -> opt op -> following op -> following op; ->
        # global op -> global op
        #
        # we put operators that can run parallelly to many program blocks.
        # in above example, we seperate ops by the ";". Global ops must run
        # after all the optimize ops finished.

        global_ops = []
        # HACK: optimization global ops only used to scale beta1 and beta2
        # replace it with dependency engine.
        for op in self.optimize_ops:
449 450
            if self._is_adam_connected_op(op):
                global_ops.append(op)
T
typhoonzero 已提交
451

Q
qiaolongfei 已提交
452
        def __append_optimize_op__(op, block, grad_to_block_id):
T
typhoonzero 已提交
453
            if self._is_opt_op(op):
Q
qiaolongfei 已提交
454
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
Y
Yancey 已提交
455
                                         self.origin_program)
T
typhoonzero 已提交
456 457 458
            else:
                self._append_pserver_non_opt_ops(block, op)

459
        # append lr decay ops to the child block if exists
460 461
        lr_ops = self._get_lr_ops()
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
462 463
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
464
            for _, op in enumerate(lr_ops):
465
                self._append_pserver_non_opt_ops(lr_decay_block, op)
466

T
typhoonzero 已提交
467
        # append op to the current block
Q
qiaolongfei 已提交
468
        grad_to_block_id = []
Q
qiaolongfei 已提交
469
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
470
        for idx, opt_op in enumerate(opt_op_on_pserver):
471
            per_opt_block = pserver_program.create_block(pre_block_idx)
T
typhoonzero 已提交
472 473
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
474
                if ufind.is_connected(op, opt_op) and op not in global_ops:
Q
qiaolongfei 已提交
475
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id)
T
typhoonzero 已提交
476 477

        # append global ops
478
        if global_ops:
Q
qiaolongfei 已提交
479 480 481
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
            for glb_op in global_ops:
X
Xi Chen 已提交
482 483
                __append_optimize_op__(glb_op, opt_state_block,
                                       grad_to_block_id)
T
typhoonzero 已提交
484 485 486 487 488 489 490 491 492

        # NOT USED: single block version:
        #
        # for _, op in enumerate(self.optimize_ops):
        #     for _, opt_op in enumerate(opt_op_on_pserver):
        #         if ufind.is_connected(op, opt_op):
        #             __append_optimize_op__(glb_op, optimize_block)
        #             break

493 494 495 496
        # process distributed lookup_table
        prefetch_block = None
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
497
            table_opt_block = self._create_table_optimize_block(
Q
qiaolongfei 已提交
498
                pserver_index, pserver_program, pre_block_idx)
499
            prefetch_block = self._create_prefetch_block(
500
                pserver_index, pserver_program, table_opt_block)
501 502 503 504 505 506 507 508 509

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
            assert prefetch_block is not None
        else:
            assert prefetch_block is None
            prefetch_block = pserver_program.global_block()

T
typhoonzero 已提交
510 511 512 513 514 515
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
            attrs={
Q
qiaolongfei 已提交
516
                "OptimizeBlock": pserver_program.block(1),
T
typhoonzero 已提交
517
                "endpoint": endpoint,
518
                "Fanin": self.trainer_num,
Q
tmp  
qiaolongfei 已提交
519 520
                "PrefetchBlock": prefetch_block,
                "sync_mode": self.sync_mode,
T
tangwei12 已提交
521
                "grad_to_block_id": grad_to_block_id
T
typhoonzero 已提交
522
            })
523

T
typhoonzero 已提交
524 525 526
        pserver_program.sync_with_cpp()
        return pserver_program

T
tangwei12 已提交
527
    def get_train_startup_program(self, checkpoint_load_dir=None):
T
tangwei12 已提交
528 529 530 531 532
        """
        Get train startup program.
        If checkpoint_load_dir is None, rerurn default startup program.
        IF checkpoint_load_dir is Exist, add checkpoint_load op and load Var.
        """
T
tangwei12 已提交
533 534 535 536 537
        startup_prog = default_startup_program()

        if not checkpoint_load_dir:
            return startup_prog

T
tangwei12 已提交
538
        load_vars = []
T
tangwei12 已提交
539
        for var in startup_prog.list_vars():
T
tangwei12 已提交
540
            if self._is_persistable(var):
T
tangwei12 已提交
541
                load_vars.append(var.name)
T
tangwei12 已提交
542

T
tangwei12 已提交
543 544
        serial_number = self._get_lastest_checkpoint_dir(checkpoint_load_dir)

T
tangwei12 已提交
545
        startup_prog.global_block().append_op(
T
tangwei12 已提交
546
            type="checkpoint_load",
T
tangwei12 已提交
547 548 549
            inputs={"X": load_vars},
            attrs={"dir": checkpoint_load_dir,
                   "Serial": serial_number})
T
tangwei12 已提交
550 551
        return startup_prog

T
tangwei12 已提交
552 553 554 555
    def get_startup_program(self,
                            endpoint,
                            pserver_program,
                            checkpoint_load_dir=None):
T
typhoonzero 已提交
556 557 558 559 560 561
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
        """
        s_prog = Program()
T
typhoonzero 已提交
562
        orig_s_prog = default_startup_program()
T
typhoonzero 已提交
563 564 565 566 567 568 569 570 571 572 573 574 575
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
        created_var_map = dict()
        for _, var in pserver_vars.iteritems():
T
update  
typhoonzero 已提交
576
            tmpvar = s_prog.global_block().clone_variable(var)
T
typhoonzero 已提交
577 578 579
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
T
tangwei12 已提交
580
        load_vars = []
T
typhoonzero 已提交
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
        for op in orig_s_prog.global_block().ops:
            new_inputs = dict()
            new_outputs = dict()
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                if newname:
                    op_on_pserver = True
                    new_outputs[key] = created_var_map[newname]
                elif op.output(key)[0] in pserver_vars:
                    op_on_pserver = True
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            # most startup program ops have no inputs
            new_inputs = self._get_input_map_from_op(pserver_vars, op)

            if op_on_pserver:
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
                    op.attrs["shape"] = new_outputs["Out"].shape
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
T
tangwei12 已提交
608 609
                for var in new_outputs.values():
                    load_vars.append(var.name)
T
tangwei12 已提交
610
        # add checkpoint op
T
tangwei12 已提交
611 612 613
        if not checkpoint_load_dir:
            return s_prog

T
tangwei12 已提交
614 615
        serial_number = self._get_lastest_checkpoint_dir(checkpoint_load_dir)

T
tangwei12 已提交
616 617 618
        s_prog.global_block().append_op(
            type="checkpoint_load",
            inputs={"X": load_vars},
T
tangwei12 已提交
619 620 621
            attrs={"dir": checkpoint_load_dir,
                   "Serial": serial_number})

T
typhoonzero 已提交
622 623
        return s_prog

T
tangwei12 已提交
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
    def _is_persistable(self, var):
        """only save LodTensor variable"""
        if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.RAW :
            return False
        return var.persistable

    def _get_lastest_checkpoint_dir(self, checkpoint_dir):
        """
        get the biggest number in checkpoint_dir, which has _SUCCESS
        """
        if not checkpoint_dir.strip():
            return ""

        def has_success(checkpoint_dir, cur_dir):
            """
            is _SUCCESS in this dir
            """
            if not os.path.isdir(cur_dir):
                return -1

            try:
                int(cur_dir)
            except ValueError:
                return -1

            success_path = os.path.join(checkpoint_dir, cur_dir, SUCCESS)
            if os.path.isfile(success_path):
                return int(cur_dir)

        current_dir = 0
        dirs = os.listdir(checkpoint_dir)
        for cur_dir in dirs:
            success_num = has_success(checkpoint_dir, cur_dir)
            if success_num > current_dir:
                current_dir = success_num
        return str(current_dir)

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
    # transpiler function for dis lookup_table
    def _replace_lookup_table_op_with_prefetch(self, program, rpc_client_var,
                                               eplist):
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
        self.prefetch_input_vars = None
        self.prefetch_output_vars = None

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

                    op_index = list(all_ops).index(op)
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

                    if self.prefetch_input_vars is None:
                        ids_var = program.global_block().vars[ids_name[0]]
                        self.prefetch_input_vars = self.create_splited_vars(
                            source_var=ids_var,
                            block=program.global_block(),
                            tag="_prefetch_in_")
                    if self.prefetch_output_vars is None:
                        out_var = program.global_block().vars[out_name[0]]
                        self.prefetch_output_vars = self.create_splited_vars(
                            source_var=out_var,
                            block=program.global_block(),
                            tag="_prefetch_out_")

                    # insert split_ids_op
                    program.global_block().insert_op(
                        index=op_index,
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
                        outputs={"Out": self.prefetch_input_vars})

                    # insert prefetch_op
                    program.global_block().insert_op(
                        index=op_index + 1,
                        type="prefetch",
                        inputs={'X': self.prefetch_input_vars},
                        outputs={
                            "Out": self.prefetch_output_vars,
                            "RPCClient": rpc_client_var
                        },
                        attrs={"epmap": eplist})

                    # insert concat_op
                    program.global_block().insert_op(
                        index=op_index + 2,
                        type="concat",
                        inputs={'X': self.prefetch_output_vars},
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
                        },
                        attrs={"axis": 0})

                    # delete lookup_table_op
732
                    delete_ops(program.global_block(), [op])
733 734 735 736 737 738 739 740
                    # break for loop
                    break

    def _split_table_grad_and_add_send_vars(self, program, rpc_client_var,
                                            pserver_endpoints):
        # 2. add split_ids_op and send_vars_op to send gradient to pservers
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
741
        table_grad_name = grad_var_name(self.table_name)
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
                program.global_block().insert_op(
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
                    outputs={"Out": self.table_grad_list})
                program.global_block().insert_op(
                    index=op_index + 2,
                    type="send_vars",
                    inputs={'X': self.table_grad_list},
                    outputs={"RPCClient": rpc_client_var},
                    attrs={"sync_send": True,
                           "epmap": pserver_endpoints})
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
        prefetch_block = pserver_program.create_block(optimize_block.idx)
        trainer_ids = self.prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
Y
Yancey1989 已提交
780
            type="lookup_sparse_table",
781 782 783 784 785 786 787 788 789 790 791
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        return prefetch_block

    def _create_table_optimize_block(self, pserver_index, pserver_program,
Q
qiaolongfei 已提交
792
                                     pre_block_idx):
793 794 795 796 797 798 799 800 801 802 803
        def _clone_var(block, var, persistable=True):
            assert isinstance(var, Variable)
            return block.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                persistable=persistable)

        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
804 805 806 807 808 809 810 811
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
            shape=origin_param_var.shape,
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
812 813
        grad_var = _clone_var(
            pserver_program.global_block(),
T
typhoonzero 已提交
814
            self.origin_program.global_block().vars[grad_var_name(
815 816 817 818 819 820 821 822
                self.table_name)],
            persistable=False)

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
            if op.input("Param")[0] == self.table_name
        ][0]
Q
qiaolongfei 已提交
823
        table_opt_block = pserver_program.create_block(pre_block_idx)
824 825 826
        # only support sgd now
        assert table_opt_op.type == "sgd"

827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
            table_grad_list = [
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

            # append sum op for table_grad_list
            table_opt_block.append_op(
                type="sum",
                inputs={"X": table_grad_list},
                outputs={"Out": [grad_var]})
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
        table_opt_block.append_op(
            type=table_opt_op.type,
            inputs=inputs,
            outputs=outputs,
            attrs=table_opt_op.attrs)

860 861
        return table_opt_block

T
typhoonzero 已提交
862 863 864 865 866 867
    # ====================== private transpiler functions =====================
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
868
        Create vars for each split.
T
typhoonzero 已提交
869 870
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
871 872 873 874 875 876 877
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
        Returns: 
            var_mapping (dict(varname->[new_varname_variable])):A dict mapping 
                from original var name to each var split.
T
typhoonzero 已提交
878
        """
879 880

        # varname->[(block_id, current_block_size)]
T
typhoonzero 已提交
881
        block_map = dict()
882

T
typhoonzero 已提交
883
        var_mapping = dict()
T
typhoonzero 已提交
884 885 886 887 888 889
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
T
typhoonzero 已提交
890
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
891
            if len(splited) == 1:
892
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
893 894 895 896 897 898 899 900
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
                    program.global_block().rename_var(varname, new_var_name)
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
901
                continue
T
typhoonzero 已提交
902 903

            var_mapping[varname] = []
T
typhoonzero 已提交
904 905 906 907
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
908

T
typhoonzero 已提交
909
            for i, block in enumerate(splited):
T
typhoonzero 已提交
910
                size = block[1]
T
typhoonzero 已提交
911 912 913 914
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
915
                new_var_name = ""
916
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
917 918 919 920 921
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
922
                var = program.global_block().create_var(
T
typhoonzero 已提交
923 924
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
925
                    dtype=orig_var.dtype,
926
                    type=orig_var.type,
T
typhoonzero 已提交
927
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
928
                var_mapping[varname].append(var)
T
typhoonzero 已提交
929
            program.global_block().sync_with_cpp()
T
typhoonzero 已提交
930
        return var_mapping
T
done  
typhoonzero 已提交
931

932 933 934 935 936 937 938 939 940 941 942
    def create_splited_vars(self, source_var, block, tag):
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
943 944 945 946 947 948 949
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
950
            persistable=persistable)
T
done  
typhoonzero 已提交
951

T
typhoonzero 已提交
952
    def _append_split_op(self, program, gradblocks):
953 954 955 956 957 958 959 960 961 962
        """
        Split variables that need to be split and append respective ops
        Args:
            program (ProgramDesc): ProgramDesc that gradients blong.
            gradblocks (list[(varname, block_id, block_size)]): List of gradient blocks.
        Returns:
            var_mapping (dict(varname->[new_splitted_variable])):A dict mapping 
                from original var name to each var split.
        """

T
typhoonzero 已提交
963
        add_suffix = False
964
        if self.trainer_num > 1:
T
typhoonzero 已提交
965
            add_suffix = True
T
typhoonzero 已提交
966
        var_mapping = self._create_vars_from_blocklist(
T
typhoonzero 已提交
967
            program, gradblocks, add_trainer_suffix=add_suffix)
T
typhoonzero 已提交
968
        for varname, splited_vars in var_mapping.iteritems():
T
typhoonzero 已提交
969 970
            # variable that don't need to split have empty splited_vars
            if len(splited_vars) <= 1:
T
typhoonzero 已提交
971
                continue
T
typhoonzero 已提交
972
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
973
            if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
974 975 976 977 978 979 980 981
                height_sections = []
                for v in splited_vars:
                    height_sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split_selected_rows",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"height_sections": height_sections})
T
typhoonzero 已提交
982
            elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
983 984 985 986
                sections = []
                for v in splited_vars:
                    sections.append(v.shape[0])
                program.global_block().append_op(
T
typhoonzero 已提交
987
                    type="split_byref",
988 989 990 991 992 993 994
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"sections": sections}  # assume split evenly
                )
            else:
                AssertionError("Variable type should be in set "
                               "[LOD_TENSOR, SELECTED_ROWS]")
T
typhoonzero 已提交
995
        return var_mapping
T
done  
typhoonzero 已提交
996

T
typhoonzero 已提交
997 998 999 1000
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1001
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

T
typhoonzero 已提交
1024 1025 1026 1027 1028
    def _orig_varname(self, varname):
        suff_idx = varname.find(".trainer_")
        orig_var_name = ""
        if suff_idx >= 0:
            orig_var_name = varname[:suff_idx]
T
typhoonzero 已提交
1029 1030
        else:
            orig_var_name = varname
T
typhoonzero 已提交
1031 1032
        return orig_var_name

1033
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
Q
qiaolongfei 已提交
1034
                            grad_to_block_id, origin_program):
1035
        program = optimize_block.program
T
typhoonzero 已提交
1036
        pserver_block = program.global_block()
T
typhoonzero 已提交
1037
        new_inputs = dict()
T
typhoonzero 已提交
1038 1039
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
1040
        for key in opt_op.input_names:
T
typhoonzero 已提交
1041 1042 1043
            if key == "Grad":
                grad_block = None
                for g in self.param_grad_ep_mapping[endpoint]["grads"]:
T
typhoonzero 已提交
1044
                    if same_or_split_var(
T
typhoonzero 已提交
1045 1046
                            self._orig_varname(g.name),
                            self._orig_varname(opt_op.input(key)[0])):
T
typhoonzero 已提交
1047 1048 1049 1050 1051 1052
                        grad_block = g
                        break
                if not grad_block:
                    # do not append this op if current endpoint
                    # is not dealing with this grad block
                    return
T
typhoonzero 已提交
1053 1054
                merged_var = \
                    pserver_block.vars[self._orig_varname(grad_block.name)]
Q
qiaolongfei 已提交
1055 1056
                grad_to_block_id.append(merged_var.name + ":" + str(
                    optimize_block.idx))
1057
                if self.sync_mode and self.trainer_num > 1:
T
typhoonzero 已提交
1058
                    vars2merge = []
1059
                    for i in xrange(self.trainer_num):
T
typhoonzero 已提交
1060 1061 1062 1063
                        per_trainer_name = "%s.trainer_%d" % \
                        (self._orig_varname(grad_block.name), i)
                        vars2merge.append(pserver_block.vars[per_trainer_name])

1064
                    optimize_block.append_op(
T
done  
typhoonzero 已提交
1065 1066 1067
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
1068
                    # TODO(panyx0718): What if it's SELECTED_ROWS.
1069 1070 1071 1072 1073
                    if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                        optimize_block.append_op(
                            type="scale",
                            inputs={"X": merged_var},
                            outputs={"Out": merged_var},
1074
                            attrs={"scale": 1.0 / float(self.trainer_num)})
1075

T
typhoonzero 已提交
1076 1077 1078 1079 1080
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
1081
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
1082 1083 1084 1085
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
1086
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1087
                    name=param_block.name,
T
typhoonzero 已提交
1088
                    persistable=True,
T
typhoonzero 已提交
1089 1090 1091
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1092
            elif key == "LearningRate":
1093
                # learning rate variable has already be created by non-optimize op,
1094
                # don't create it once again.
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
                lr_varname = opt_op.input(key)[0]
                if pserver_block.vars.has_key(lr_varname):
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1106

T
typhoonzero 已提交
1107
        for key in opt_op.input_names:
1108 1109
            new_shape = None
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1110
                continue
1111
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1112 1113 1114 1115
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1116
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1117 1118 1119 1120 1121
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1122

1123
        # change output's ParamOut variable
1124 1125
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1126
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1127

1128
        optimize_block.append_op(
T
typhoonzero 已提交
1129 1130
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1131
            outputs=outputs,
T
typhoonzero 已提交
1132 1133
            attrs=opt_op.attrs)

1134 1135
    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
        program = optimize_block.program
1136
        # Append the ops for parameters that do not need to be optimized/updated
1137 1138
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1139 1140 1141 1142
        for varlist in inputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

T
typhoonzero 已提交
1143
            for var in varlist:
1144 1145
                if not program.global_block().vars.has_key(var.name):
                    program.global_block().create_var(
T
typhoonzero 已提交
1146 1147 1148 1149 1150
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1151 1152
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
T
typhoonzero 已提交
1153

1154 1155 1156 1157 1158
        for varlist in outputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

            for var in varlist:
T
update  
typhoonzero 已提交
1159
                program.global_block().clone_variable(var)
1160

1161
        optimize_block.append_op(
T
typhoonzero 已提交
1162
            type=opt_op.type,
T
typhoonzero 已提交
1163 1164
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
1165 1166
            attrs=opt_op.attrs)

1167 1168 1169 1170
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
T
typhoonzero 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
        def _append_inname_remove_beta(varname_list):
            op_input_names = []
            for in_name in varname_list:
                # HACK: remove beta1 and beta2 to avoid let all
                # ops connected.
                if in_name.startswith("beta2_pow_acc") or \
                    in_name.startswith("beta1_pow_acc"):
                    continue
                else:
                    op_input_names.append(in_name)
            return op_input_names

        op1_input_names = _append_inname_remove_beta(op1.desc.input_arg_names())
T
typhoonzero 已提交
1184 1185
        op1_output_names = op1.desc.output_arg_names()

T
typhoonzero 已提交
1186
        op2_input_names = _append_inname_remove_beta(op2.desc.input_arg_names())
T
typhoonzero 已提交
1187
        op2_output_names = op2.desc.output_arg_names()
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206

        if set(op1_output_names) & set(op2_input_names) or \
           set(op1_input_names) & set(op2_output_names):
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
        for i in xrange(len(optimize_ops)):
            for j in xrange(i, len(optimize_ops)):
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

    def _is_opt_op(self, op):
        # NOTE: It's a HACK implement.
1207
        # optimize op: SGDOptimize, MomentumOptimizer, AdamOptimizer and etc...
T
typhoonzero 已提交
1208 1209
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1210 1211 1212 1213 1214 1215 1216
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1217
        if op.input("Param")[0] in param_names:
1218 1219 1220
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1221
                param = op.input("Param")[0]
T
typhoonzero 已提交
1222
                if same_or_split_var(n, param) and n != param:
1223 1224 1225
                    return True
            return False

T
typhoonzero 已提交
1226
    def _get_input_map_from_op(self, varmap, op):
1227
        """Returns a dict from op input name to the vars in varmap."""
T
typhoonzero 已提交
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1240
        """Returns a dict from op output name to the vars in varmap."""
T
typhoonzero 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
            if self._is_opt_op(op):
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1262
        block = self.origin_program.global_block()
1263 1264 1265 1266 1267
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1268

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
                    not self._is_opt_op(op1) and not self._is_opt_op(op2):
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1281 1282
                    # we only need to append op for once
                    break
1283
        return lr_ops
Y
Yancey1989 已提交
1284 1285

    def _get_optimize_pass(self):
1286 1287 1288 1289 1290 1291
        """
        Get optimizer operators, paramters and gradients from origin_program
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
        for op in block.ops:
            if self._is_opt_op(op):
                opt_ops.append(op)
                params_grads.append((self.origin_program.global_block().var(
                    op.input("Param")[0]),
                                     self.origin_program.global_block().var(
                                         op.input("Grad")[0])))
1302 1303
            elif self._is_adam_connected_op(op):
                opt_ops.append(op)
Y
Yancey1989 已提交
1304 1305 1306
            else:
                pass
        return opt_ops, params_grads
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318

    def _is_adam_connected_op(self, op):
        """
        A hack function to determinate whether the input operator
        is connected to optimize operator.
        """
        if op.type == "scale":
            for in_name in op.input_arg_names:
                if in_name.startswith("beta1_pow_acc") or \
                        in_name.startswith("beta2_pow_acc"):
                    return True
        return False