distribute_transpiler.py 50.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
typhoonzero 已提交
15
from __future__ import print_function
16

T
typhoonzero 已提交
17
import math
18 19

import distributed_splitter as splitter
20
from .. import core
T
typhoonzero 已提交
21 22 23
from ..framework import Program, default_main_program, \
                        default_startup_program, \
                        Variable, Parameter, grad_var_name
24 25 26 27

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
RPC_CLIENT_VAR_NAME = "RPC_CLIENT_VAR"
T
done  
typhoonzero 已提交
28 29


T
typhoonzero 已提交
30 31 32 33 34 35
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
36

T
typhoonzero 已提交
37 38
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
39 40


41
class UnionFind(object):
42
    """ Union-find data structure.
43

44
    Union-find is a data structure that keeps track of a set of elements partitioned
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    into a number of disjoint (non-overlapping) subsets.

    Reference:
    https://en.wikipedia.org/wiki/Disjoint-set_data_structure

    Args:
      elements(list): The initialize element list.
    """

    def __init__(self, elementes=None):
        self._parents = []  # index -> parent index
        self._index = {}  # element -> index
        self._curr_idx = 0
        if not elementes:
            elementes = []
        for ele in elementes:
            self._parents.append(self._curr_idx)
            self._index.update({ele: self._curr_idx})
            self._curr_idx += 1

    def find(self, x):
        # Find the root index of given element x,
        # execute the path compress while findind the root index
        if not x in self._index:
            return -1
        idx = self._index[x]
        while idx != self._parents[idx]:
            t = self._parents[idx]
            self._parents[idx] = self._parents[t]
            idx = t
        return idx

    def union(self, x, y):
        # Union two given element
        x_root = self.find(x)
        y_root = self.find(y)

        if x_root == y_root:
            return
        self._parents[x_root] = y_root

    def is_connected(self, x, y):
        # If two given elements have the same root index,
        # then they are connected.
        return self.find(x) == self.find(y)


92 93 94 95
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


T
typhoonzero 已提交
96 97 98 99 100
def split_dense_variable(var_list,
                         pserver_count,
                         min_block_size=1024,
                         max_block_size=1048576):
    """
101
        We may need to split dense tensor to one or more blocks and put
T
typhoonzero 已提交
102 103
        them equally onto parameter server. One block is a sub-tensor
        aligned by dim[0] of the tensor.
104

T
typhoonzero 已提交
105 106
        We need to have a minimal block size so that the calculations in
        the parameter server side can gain better performance. By default
107 108
        minimum block size is 1024. The max block size is used to prevent
        very large blocks that may cause send error.
109 110
        :return: A list of VarBlocks. Each VarBlock specifies a shard of
           the var.
T
typhoonzero 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    """
    blocks = []
    for var in var_list:
        split_count = pserver_count
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
        if max_pserver_count < pserver_count:
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
129
        # update split_count after aligning
T
typhoonzero 已提交
130 131 132 133 134 135 136 137 138
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


139 140 141 142 143 144 145 146 147 148
def delete_ops(block, ops):
    try:
        start = list(block.ops).index(ops[0])
        end = list(block.ops).index(ops[-1])
        [block.remove_op(start) for _ in xrange(end - start + 1)]
    except Exception, e:
        raise e
    block.program.sync_with_cpp()


T
done  
typhoonzero 已提交
149 150
class DistributeTranspiler:
    def transpile(self,
T
typhoonzero 已提交
151
                  trainer_id,
T
done  
typhoonzero 已提交
152 153 154
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
Q
tmp  
qiaolongfei 已提交
155 156
                  split_method=splitter.round_robin,
                  sync_mode=True):
T
done  
typhoonzero 已提交
157
        """
T
typhoonzero 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
        Transpile the program to distributed data-parallelism programs.
        The main_program will be transformed to use a remote parameter server
        to do parameter optimization. And the optimization graph will be put
        into a parameter server program.

        Use different methods to split trainable variables to different
        parameter servers.

        Steps to transpile trainer:
        1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
        2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
        3. modify trainer program add split_op to each grad variable.
        4. append send_op to send splited variables to server and fetch
            params(splited blocks or origin param) from server.
        5. append concat_op to merge splited blocks to update local weights.

        Steps to transpile pserver:
        1. create new program for parameter server.
        2. create params and grad variables that assigned to current server instance.
        3. create a sub-block in the server side program
        4. append ops that should run on current server instance.
        5. add listen_and_serv op

        :param trainer_id: one unique id for each trainer in a job.
        :type trainer_id: int
        :param program: program to transpile, default is default_main_program
        :type program: Program
        :param pservers: parameter server endpoints like "m1:6174,m2:6174"
        :type pservers: string
        :param trainers: total number of workers/trainers in the job
        :type trainers: int
        :param split_method: A function to determin how to split variables
            to different servers equally.
        :type split_method: function
        :type sync_mode: boolean default True
        :param sync_mode: if sync_mode is set True, it means that dist transpiler
        will transpile the program into sync_mode pserver and trainer program.
T
done  
typhoonzero 已提交
195
        """
T
typhoonzero 已提交
196
        assert (callable(split_method))
T
done  
typhoonzero 已提交
197 198
        if program is None:
            program = default_main_program()
199 200
        self.origin_program = program
        self.trainer_num = trainers
Q
tmp  
qiaolongfei 已提交
201
        self.sync_mode = sync_mode
T
typhoonzero 已提交
202 203 204 205
        # TODO(typhoonzero): currently trainer_id is fetched from cluster system
        # like Kubernetes, we should port this to use etcd later when developing
        # fluid distributed training with fault-tolerance.
        self.trainer_id = trainer_id
T
typhoonzero 已提交
206
        pserver_endpoints = pservers.split(",")
207
        self.pserver_endpoints = pserver_endpoints
Y
Yancey1989 已提交
208
        self.optimize_ops, params_grads = self._get_optimize_pass()
209

T
tangwei12 已提交
210 211 212 213 214
        # is_chief (no.0 triner) for checkpoint
        # the no.0 trainer will save all variables and its own reader offset to checkpoint
        # other trianers will save its own reader offset to checkpoint
        self.is_chief = trainer_id == 0

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
                if op.attrs['is_distributed'] is True:
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        self.has_distributed_lookup_table = len(
            distributed_lookup_table_ops) > 0
T
typhoonzero 已提交
236

237 238
        # step1: For large parameters and gradients, split them into smaller
        # blocks.
T
typhoonzero 已提交
239 240 241 242 243 244 245 246
        param_list = []
        grad_list = []
        for p, g in params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            param_list.append(p)
            grad_list.append(g)
247 248 249 250 251 252 253

        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
T
typhoonzero 已提交
254
                if grad.name != grad_var_name(self.table_name)
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            self.table_grad_list = [
                program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, trainer_id, index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(len(self.pserver_endpoints))
            ]

T
typhoonzero 已提交
271 272
        grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
        param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
273 274
        # step2: Create new vars for the parameters and gradients blocks and
        # add ops to do the split.
T
typhoonzero 已提交
275
        grad_var_mapping = self._append_split_op(program, grad_blocks)
276 277 278 279
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
        # step3: Add gradients as send op inputs and parameters as send
        # op outputs.
T
typhoonzero 已提交
280
        send_inputs = []
T
typhoonzero 已提交
281
        send_outputs = []
T
typhoonzero 已提交
282 283 284 285 286 287
        for b in grad_blocks:  # append by order
            varname, block_id, _ = b.split(":")
            send_inputs.append(grad_var_mapping[varname][int(block_id)])
        for b in param_blocks:
            varname, block_id, _ = b.split(":")
            send_outputs.append(param_var_mapping[varname][int(block_id)])
288 289
        # let send_op know which endpoint to send which var to, eplist has the same
        # order as send_inputs.
T
typhoonzero 已提交
290
        eplist = split_method(send_inputs, pserver_endpoints)
291
        # create mapping of endpoint -> split var to create pserver side program
T
typhoonzero 已提交
292 293 294 295 296 297 298 299
        self.param_grad_ep_mapping = dict()
        for i, ep in enumerate(eplist):
            param = send_outputs[i]
            grad = send_inputs[i]
            if not self.param_grad_ep_mapping.has_key(ep):
                self.param_grad_ep_mapping[ep] = {"params": [], "grads": []}
            self.param_grad_ep_mapping[ep]["params"].append(param)
            self.param_grad_ep_mapping[ep]["grads"].append(grad)
T
typhoonzero 已提交
300

T
typhoonzero 已提交
301
        rpc_client_var = program.global_block().create_var(
302
            name=RPC_CLIENT_VAR_NAME,
T
typhoonzero 已提交
303
            persistable=True,
T
typhoonzero 已提交
304
            type=core.VarDesc.VarType.RAW)
T
typhoonzero 已提交
305

306
        # create send_op
T
typhoonzero 已提交
307
        program.global_block().append_op(
T
typhoonzero 已提交
308 309
            type="send",
            inputs={"X": send_inputs},
T
typhoonzero 已提交
310 311
            outputs={"Out": send_outputs,
                     "RPCClient": rpc_client_var},
Q
qiaolongfei 已提交
312 313 314 315 316
            attrs={
                "endpoints": pserver_endpoints,
                "epmap": eplist,
                "sync_mode": self.sync_mode
            })
T
tangwei12 已提交
317

T
tangwei12 已提交
318 319 320 321 322 323 324 325 326 327
        serial_var = program.global_block().create_var(
            name="SERIAL_NUMBER",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

        save_vars = []
        for var in self.origin_program.list_vars():
            if self.is_persistable(var):
                save_vars.append(var.name)

T
tangwei12 已提交
328 329
        program.global_block().append_op(
            type="checkpoint_save",
T
tangwei12 已提交
330 331 332
            inputs={"X": save_vars},
            outputs={"Serial": serial_var},
            attrs={"overwrite": False,
T
tangwei12 已提交
333
                   "dir": "/workspace/ckpt/"})
T
tangwei12 已提交
334

335
        # step4: Concat the parameters splits together after recv.
T
typhoonzero 已提交
336
        for varname, splited_var in param_var_mapping.iteritems():
T
typhoonzero 已提交
337 338
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
339
            orig_param = program.global_block().vars[varname]
T
typhoonzero 已提交
340
            program.global_block().append_op(
T
typhoonzero 已提交
341
                type="concat",
T
typhoonzero 已提交
342
                inputs={"X": splited_var},
T
typhoonzero 已提交
343
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
344
                attrs={"axis": 0})
T
typhoonzero 已提交
345

346 347 348 349 350 351
        if self.has_distributed_lookup_table:
            self._replace_lookup_table_op_with_prefetch(program, rpc_client_var,
                                                        eplist)
            self._split_table_grad_and_add_send_vars(program, rpc_client_var,
                                                     pserver_endpoints)

T
typhoonzero 已提交
352 353
    def get_trainer_program(self):
        # remove optimize ops and add a send op to main_program
354
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
355
        # FIXME(typhoonzero): serialize once will fix error occurs when clone.
356 357
        self.origin_program.__str__()
        return self.origin_program
T
typhoonzero 已提交
358 359 360 361

    def get_pserver_program(self, endpoint):
        """
        Get pserver side program using the endpoint.
362
        TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
T
typhoonzero 已提交
363 364 365 366 367 368
        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch.
        """
        # step1
        pserver_program = Program()
369
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
370 371 372 373 374 375 376 377
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
378 379 380 381 382 383

            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
384 385 386 387 388 389 390 391 392
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
393
            if self.sync_mode and self.trainer_num > 1:
394
                for trainer_id in xrange(self.trainer_num):
T
typhoonzero 已提交
395 396 397 398 399 400 401 402 403
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
404

Q
qiaolongfei 已提交
405
        # step 3
406
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
407 408 409
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
410
        # step 3.2
T
typhoonzero 已提交
411 412 413 414 415 416
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
            if self._is_opt_op(op) and self._is_opt_op_on_pserver(endpoint, op):
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
417
        # step 3.3
T
typhoonzero 已提交
418
        # Iterate through the ops, and if an op and the optimize ops
419
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
420
        # append it into the sub program.
T
typhoonzero 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436

        # We try to put optimization program run parallelly, assume
        # optimization program always looks like:
        #
        # prevop -> prevop -> opt op -> following op -> following op; ->
        # prevop -> prevop -> opt op -> following op -> following op; ->
        # global op -> global op
        #
        # we put operators that can run parallelly to many program blocks.
        # in above example, we seperate ops by the ";". Global ops must run
        # after all the optimize ops finished.

        global_ops = []
        # HACK: optimization global ops only used to scale beta1 and beta2
        # replace it with dependency engine.
        for op in self.optimize_ops:
437 438
            if self._is_adam_connected_op(op):
                global_ops.append(op)
T
typhoonzero 已提交
439

Q
qiaolongfei 已提交
440
        def __append_optimize_op__(op, block, grad_to_block_id):
T
typhoonzero 已提交
441
            if self._is_opt_op(op):
Q
qiaolongfei 已提交
442
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
T
typhoonzero 已提交
443 444 445 446
                                         default_main_program())
            else:
                self._append_pserver_non_opt_ops(block, op)

447
        # append lr decay ops to the child block if exists
448 449
        lr_ops = self._get_lr_ops()
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
450 451
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
452
            for _, op in enumerate(lr_ops):
453
                self._append_pserver_non_opt_ops(lr_decay_block, op)
454

T
typhoonzero 已提交
455
        # append op to the current block
Q
qiaolongfei 已提交
456
        grad_to_block_id = []
Q
qiaolongfei 已提交
457
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
458
        for idx, opt_op in enumerate(opt_op_on_pserver):
459
            per_opt_block = pserver_program.create_block(pre_block_idx)
T
typhoonzero 已提交
460 461
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
462
                if ufind.is_connected(op, opt_op) and op not in global_ops:
Q
qiaolongfei 已提交
463
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id)
T
typhoonzero 已提交
464 465

        # append global ops
466
        if global_ops:
Q
qiaolongfei 已提交
467 468 469
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
            for glb_op in global_ops:
X
Xi Chen 已提交
470 471
                __append_optimize_op__(glb_op, opt_state_block,
                                       grad_to_block_id)
T
typhoonzero 已提交
472 473 474 475 476 477 478 479 480

        # NOT USED: single block version:
        #
        # for _, op in enumerate(self.optimize_ops):
        #     for _, opt_op in enumerate(opt_op_on_pserver):
        #         if ufind.is_connected(op, opt_op):
        #             __append_optimize_op__(glb_op, optimize_block)
        #             break

481 482 483 484
        # process distributed lookup_table
        prefetch_block = None
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
485
            table_opt_block = self._create_table_optimize_block(
Q
qiaolongfei 已提交
486
                pserver_index, pserver_program, pre_block_idx)
487
            prefetch_block = self._create_prefetch_block(
488
                pserver_index, pserver_program, table_opt_block)
489 490 491 492 493 494 495 496 497

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
            assert prefetch_block is not None
        else:
            assert prefetch_block is None
            prefetch_block = pserver_program.global_block()

T
typhoonzero 已提交
498 499 500 501 502 503
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
            attrs={
Q
qiaolongfei 已提交
504
                "OptimizeBlock": pserver_program.block(1),
T
typhoonzero 已提交
505
                "endpoint": endpoint,
506
                "Fanin": self.trainer_num,
Q
tmp  
qiaolongfei 已提交
507 508
                "PrefetchBlock": prefetch_block,
                "sync_mode": self.sync_mode,
T
tangwei12 已提交
509
                "grad_to_block_id": grad_to_block_id
T
typhoonzero 已提交
510
            })
511

T
typhoonzero 已提交
512 513 514
        pserver_program.sync_with_cpp()
        return pserver_program

T
tangwei12 已提交
515 516 517 518 519 520 521 522
    def is_persistable(self, var):
        if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.RAW :
            return False
        return var.persistable

    def get_train_startup_program(self, checkpoint_load_dir=None):
T
tangwei12 已提交
523 524 525 526 527
        """
        Get train startup program.
        If checkpoint_load_dir is None, rerurn default startup program.
        IF checkpoint_load_dir is Exist, add checkpoint_load op and load Var.
        """
T
tangwei12 已提交
528 529 530 531 532
        startup_prog = default_startup_program()

        if not checkpoint_load_dir:
            return startup_prog

T
tangwei12 已提交
533
        load_vars = []
T
tangwei12 已提交
534 535
        for var in startup_prog.list_vars():
            if self.is_persistable(var):
T
tangwei12 已提交
536
                load_vars.append(var.name)
T
tangwei12 已提交
537 538

        startup_prog.global_block().append_op(
T
tangwei12 已提交
539 540 541
            type="checkpoint_load",
            outputs={"Out": load_vars},
            attrs={"dir": checkpoint_load_dir})
T
tangwei12 已提交
542 543
        return startup_prog

T
tangwei12 已提交
544 545 546 547
    def get_startup_program(self,
                            endpoint,
                            pserver_program,
                            checkpoint_load_dir=None):
T
typhoonzero 已提交
548 549 550 551 552 553
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
        """
        s_prog = Program()
T
typhoonzero 已提交
554
        orig_s_prog = default_startup_program()
T
typhoonzero 已提交
555 556 557 558 559 560 561 562 563 564 565 566 567
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
        created_var_map = dict()
        for _, var in pserver_vars.iteritems():
T
update  
typhoonzero 已提交
568
            tmpvar = s_prog.global_block().clone_variable(var)
T
typhoonzero 已提交
569 570 571
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
T
tangwei12 已提交
572
        load_vars = []
T
typhoonzero 已提交
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
        for op in orig_s_prog.global_block().ops:
            new_inputs = dict()
            new_outputs = dict()
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                if newname:
                    op_on_pserver = True
                    new_outputs[key] = created_var_map[newname]
                elif op.output(key)[0] in pserver_vars:
                    op_on_pserver = True
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            # most startup program ops have no inputs
            new_inputs = self._get_input_map_from_op(pserver_vars, op)

            if op_on_pserver:
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
                    op.attrs["shape"] = new_outputs["Out"].shape
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
T
tangwei12 已提交
600 601 602 603 604 605 606 607 608 609
                for var in new_outputs.values():
                    load_vars.append(var.name)
        # add checkpoint op 
        if not checkpoint_load_dir:
            return s_prog

        s_prog.global_block().append_op(
            type="checkpoint_load",
            inputs={"X": load_vars},
            attrs={"dir": checkpoint_load_dir})
T
typhoonzero 已提交
610 611
        return s_prog

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
    # transpiler function for dis lookup_table
    def _replace_lookup_table_op_with_prefetch(self, program, rpc_client_var,
                                               eplist):
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
        self.prefetch_input_vars = None
        self.prefetch_output_vars = None

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

                    op_index = list(all_ops).index(op)
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

                    if self.prefetch_input_vars is None:
                        ids_var = program.global_block().vars[ids_name[0]]
                        self.prefetch_input_vars = self.create_splited_vars(
                            source_var=ids_var,
                            block=program.global_block(),
                            tag="_prefetch_in_")
                    if self.prefetch_output_vars is None:
                        out_var = program.global_block().vars[out_name[0]]
                        self.prefetch_output_vars = self.create_splited_vars(
                            source_var=out_var,
                            block=program.global_block(),
                            tag="_prefetch_out_")

                    # insert split_ids_op
                    program.global_block().insert_op(
                        index=op_index,
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
                        outputs={"Out": self.prefetch_input_vars})

                    # insert prefetch_op
                    program.global_block().insert_op(
                        index=op_index + 1,
                        type="prefetch",
                        inputs={'X': self.prefetch_input_vars},
                        outputs={
                            "Out": self.prefetch_output_vars,
                            "RPCClient": rpc_client_var
                        },
                        attrs={"epmap": eplist})

                    # insert concat_op
                    program.global_block().insert_op(
                        index=op_index + 2,
                        type="concat",
                        inputs={'X': self.prefetch_output_vars},
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
                        },
                        attrs={"axis": 0})

                    # delete lookup_table_op
681
                    delete_ops(program.global_block(), [op])
682 683 684 685 686 687 688 689
                    # break for loop
                    break

    def _split_table_grad_and_add_send_vars(self, program, rpc_client_var,
                                            pserver_endpoints):
        # 2. add split_ids_op and send_vars_op to send gradient to pservers
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
690
        table_grad_name = grad_var_name(self.table_name)
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
                program.global_block().insert_op(
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
                    outputs={"Out": self.table_grad_list})
                program.global_block().insert_op(
                    index=op_index + 2,
                    type="send_vars",
                    inputs={'X': self.table_grad_list},
                    outputs={"RPCClient": rpc_client_var},
                    attrs={"sync_send": True,
                           "epmap": pserver_endpoints})
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
        prefetch_block = pserver_program.create_block(optimize_block.idx)
        trainer_ids = self.prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
Y
Yancey1989 已提交
729
            type="lookup_sparse_table",
730 731 732 733 734 735 736 737 738 739 740
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        return prefetch_block

    def _create_table_optimize_block(self, pserver_index, pserver_program,
Q
qiaolongfei 已提交
741
                                     pre_block_idx):
742 743 744 745 746 747 748 749 750 751 752
        def _clone_var(block, var, persistable=True):
            assert isinstance(var, Variable)
            return block.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                persistable=persistable)

        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
753 754 755 756 757 758 759 760
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
            shape=origin_param_var.shape,
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
761 762
        grad_var = _clone_var(
            pserver_program.global_block(),
T
typhoonzero 已提交
763
            self.origin_program.global_block().vars[grad_var_name(
764 765 766 767 768 769 770 771
                self.table_name)],
            persistable=False)

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
            if op.input("Param")[0] == self.table_name
        ][0]
Q
qiaolongfei 已提交
772
        table_opt_block = pserver_program.create_block(pre_block_idx)
773 774 775
        # only support sgd now
        assert table_opt_op.type == "sgd"

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
            table_grad_list = [
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

            # append sum op for table_grad_list
            table_opt_block.append_op(
                type="sum",
                inputs={"X": table_grad_list},
                outputs={"Out": [grad_var]})
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
        table_opt_block.append_op(
            type=table_opt_op.type,
            inputs=inputs,
            outputs=outputs,
            attrs=table_opt_op.attrs)

809 810
        return table_opt_block

T
typhoonzero 已提交
811 812 813 814 815 816
    # ====================== private transpiler functions =====================
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
817
        Create vars for each split.
T
typhoonzero 已提交
818 819
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
820
        :return: A dict mapping from original var name to each var split.
T
typhoonzero 已提交
821
        """
T
typhoonzero 已提交
822
        block_map = dict()
T
typhoonzero 已提交
823
        var_mapping = dict()
T
typhoonzero 已提交
824 825 826 827 828 829
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
T
typhoonzero 已提交
830
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
831
            if len(splited) == 1:
832
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
833 834 835 836 837 838 839 840
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
                    program.global_block().rename_var(varname, new_var_name)
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
841
                continue
T
typhoonzero 已提交
842 843

            var_mapping[varname] = []
T
typhoonzero 已提交
844 845 846 847
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
848

T
typhoonzero 已提交
849
            for i, block in enumerate(splited):
T
typhoonzero 已提交
850
                size = block[1]
T
typhoonzero 已提交
851 852 853 854
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
855
                new_var_name = ""
856
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
857 858 859 860 861
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
862
                var = program.global_block().create_var(
T
typhoonzero 已提交
863 864
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
865
                    dtype=orig_var.dtype,
866
                    type=orig_var.type,
T
typhoonzero 已提交
867
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
868
                var_mapping[varname].append(var)
T
typhoonzero 已提交
869
            program.global_block().sync_with_cpp()
T
typhoonzero 已提交
870
        return var_mapping
T
done  
typhoonzero 已提交
871

872 873 874 875 876 877 878 879 880 881 882
    def create_splited_vars(self, source_var, block, tag):
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
883 884 885 886 887 888 889
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
890
            persistable=persistable)
T
done  
typhoonzero 已提交
891

T
typhoonzero 已提交
892
    def _append_split_op(self, program, gradblocks):
893
        # Split variables that need to be split and append respective ops
T
typhoonzero 已提交
894
        add_suffix = False
895
        if self.trainer_num > 1:
T
typhoonzero 已提交
896
            add_suffix = True
T
typhoonzero 已提交
897
        var_mapping = self._create_vars_from_blocklist(
T
typhoonzero 已提交
898
            program, gradblocks, add_trainer_suffix=add_suffix)
T
typhoonzero 已提交
899
        for varname, splited_vars in var_mapping.iteritems():
T
typhoonzero 已提交
900 901
            # variable that don't need to split have empty splited_vars
            if len(splited_vars) <= 1:
T
typhoonzero 已提交
902
                continue
T
typhoonzero 已提交
903
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
904
            if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
905 906 907 908 909 910 911 912
                height_sections = []
                for v in splited_vars:
                    height_sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split_selected_rows",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"height_sections": height_sections})
T
typhoonzero 已提交
913
            elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
914 915 916 917
                sections = []
                for v in splited_vars:
                    sections.append(v.shape[0])
                program.global_block().append_op(
T
typhoonzero 已提交
918
                    type="split_byref",
919 920 921 922 923 924 925
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"sections": sections}  # assume split evenly
                )
            else:
                AssertionError("Variable type should be in set "
                               "[LOD_TENSOR, SELECTED_ROWS]")
T
typhoonzero 已提交
926
        return var_mapping
T
done  
typhoonzero 已提交
927

T
typhoonzero 已提交
928 929 930 931
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
932
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

T
typhoonzero 已提交
955 956 957 958 959
    def _orig_varname(self, varname):
        suff_idx = varname.find(".trainer_")
        orig_var_name = ""
        if suff_idx >= 0:
            orig_var_name = varname[:suff_idx]
T
typhoonzero 已提交
960 961
        else:
            orig_var_name = varname
T
typhoonzero 已提交
962 963
        return orig_var_name

964
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
Q
qiaolongfei 已提交
965
                            grad_to_block_id, origin_program):
966
        program = optimize_block.program
T
typhoonzero 已提交
967
        pserver_block = program.global_block()
T
typhoonzero 已提交
968
        new_inputs = dict()
T
typhoonzero 已提交
969 970
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
971
        for key in opt_op.input_names:
T
typhoonzero 已提交
972 973 974
            if key == "Grad":
                grad_block = None
                for g in self.param_grad_ep_mapping[endpoint]["grads"]:
T
typhoonzero 已提交
975
                    if same_or_split_var(
T
typhoonzero 已提交
976 977
                            self._orig_varname(g.name),
                            self._orig_varname(opt_op.input(key)[0])):
T
typhoonzero 已提交
978 979 980 981 982 983
                        grad_block = g
                        break
                if not grad_block:
                    # do not append this op if current endpoint
                    # is not dealing with this grad block
                    return
T
typhoonzero 已提交
984 985
                merged_var = \
                    pserver_block.vars[self._orig_varname(grad_block.name)]
Q
qiaolongfei 已提交
986 987
                grad_to_block_id.append(merged_var.name + ":" + str(
                    optimize_block.idx))
988
                if self.sync_mode and self.trainer_num > 1:
T
typhoonzero 已提交
989
                    vars2merge = []
990
                    for i in xrange(self.trainer_num):
T
typhoonzero 已提交
991 992 993 994
                        per_trainer_name = "%s.trainer_%d" % \
                        (self._orig_varname(grad_block.name), i)
                        vars2merge.append(pserver_block.vars[per_trainer_name])

995
                    optimize_block.append_op(
T
done  
typhoonzero 已提交
996 997 998
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
999
                    # TODO(panyx0718): What if it's SELECTED_ROWS.
1000 1001 1002 1003 1004
                    if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                        optimize_block.append_op(
                            type="scale",
                            inputs={"X": merged_var},
                            outputs={"Out": merged_var},
1005
                            attrs={"scale": 1.0 / float(self.trainer_num)})
1006

T
typhoonzero 已提交
1007 1008 1009 1010 1011
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
1012
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
1013 1014 1015 1016
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
1017
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1018
                    name=param_block.name,
T
typhoonzero 已提交
1019
                    persistable=True,
T
typhoonzero 已提交
1020 1021 1022
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1023
            elif key == "LearningRate":
1024
                # learning rate variable has already be created by non-optimize op,
1025
                # don't create it once again.
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
                lr_varname = opt_op.input(key)[0]
                if pserver_block.vars.has_key(lr_varname):
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1037

T
typhoonzero 已提交
1038
        for key in opt_op.input_names:
1039 1040
            new_shape = None
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1041
                continue
1042
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1043 1044 1045 1046
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1047
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1048 1049 1050 1051 1052
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1053

1054
        # change output's ParamOut variable
1055 1056
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1057
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1058

1059
        optimize_block.append_op(
T
typhoonzero 已提交
1060 1061
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1062
            outputs=outputs,
T
typhoonzero 已提交
1063 1064
            attrs=opt_op.attrs)

1065 1066
    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
        program = optimize_block.program
1067
        # Append the ops for parameters that do not need to be optimized/updated
1068 1069
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1070 1071 1072 1073
        for varlist in inputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

T
typhoonzero 已提交
1074
            for var in varlist:
1075 1076
                if not program.global_block().vars.has_key(var.name):
                    program.global_block().create_var(
T
typhoonzero 已提交
1077 1078 1079 1080 1081
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1082 1083
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
T
typhoonzero 已提交
1084

1085 1086 1087 1088 1089
        for varlist in outputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

            for var in varlist:
T
update  
typhoonzero 已提交
1090
                program.global_block().clone_variable(var)
1091

1092
        optimize_block.append_op(
T
typhoonzero 已提交
1093
            type=opt_op.type,
T
typhoonzero 已提交
1094 1095
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
1096 1097
            attrs=opt_op.attrs)

1098 1099 1100 1101
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
T
typhoonzero 已提交
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
        def _append_inname_remove_beta(varname_list):
            op_input_names = []
            for in_name in varname_list:
                # HACK: remove beta1 and beta2 to avoid let all
                # ops connected.
                if in_name.startswith("beta2_pow_acc") or \
                    in_name.startswith("beta1_pow_acc"):
                    continue
                else:
                    op_input_names.append(in_name)
            return op_input_names

        op1_input_names = _append_inname_remove_beta(op1.desc.input_arg_names())
T
typhoonzero 已提交
1115 1116
        op1_output_names = op1.desc.output_arg_names()

T
typhoonzero 已提交
1117
        op2_input_names = _append_inname_remove_beta(op2.desc.input_arg_names())
T
typhoonzero 已提交
1118
        op2_output_names = op2.desc.output_arg_names()
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137

        if set(op1_output_names) & set(op2_input_names) or \
           set(op1_input_names) & set(op2_output_names):
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
        for i in xrange(len(optimize_ops)):
            for j in xrange(i, len(optimize_ops)):
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

    def _is_opt_op(self, op):
        # NOTE: It's a HACK implement.
1138
        # optimize op: SGDOptimize, MomentumOptimizer, AdamOptimizer and etc...
T
typhoonzero 已提交
1139 1140
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1141 1142 1143 1144 1145 1146 1147
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1148
        if op.input("Param")[0] in param_names:
1149 1150 1151
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1152
                param = op.input("Param")[0]
T
typhoonzero 已提交
1153
                if same_or_split_var(n, param) and n != param:
1154 1155 1156
                    return True
            return False

T
typhoonzero 已提交
1157
    def _get_input_map_from_op(self, varmap, op):
1158
        """Returns a dict from op input name to the vars in varmap."""
T
typhoonzero 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1171
        """Returns a dict from op output name to the vars in varmap."""
T
typhoonzero 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
            if self._is_opt_op(op):
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1193
        block = self.origin_program.global_block()
1194 1195 1196 1197 1198
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1199

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
                    not self._is_opt_op(op1) and not self._is_opt_op(op2):
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1212 1213
                    # we only need to append op for once
                    break
1214
        return lr_ops
Y
Yancey1989 已提交
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226

    def _get_optimize_pass(self):
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
        for op in block.ops:
            if self._is_opt_op(op):
                opt_ops.append(op)
                params_grads.append((self.origin_program.global_block().var(
                    op.input("Param")[0]),
                                     self.origin_program.global_block().var(
                                         op.input("Grad")[0])))
1227 1228
            elif self._is_adam_connected_op(op):
                opt_ops.append(op)
Y
Yancey1989 已提交
1229 1230 1231
            else:
                pass
        return opt_ops, params_grads
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243

    def _is_adam_connected_op(self, op):
        """
        A hack function to determinate whether the input operator
        is connected to optimize operator.
        """
        if op.type == "scale":
            for in_name in op.input_arg_names:
                if in_name.startswith("beta1_pow_acc") or \
                        in_name.startswith("beta2_pow_acc"):
                    return True
        return False