fake_quantize_op.cu 19.0 KB
Newer Older
视言's avatar
视言 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
16
#include "paddle/fluid/memory/memcpy.h"
视言's avatar
视言 已提交
17 18 19 20 21 22 23
#include "paddle/fluid/operators/fake_quantize_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"

namespace paddle {
namespace operators {

template <typename T>
24
__global__ void FindAbsMaxKernel(const T* in, const int n, T* out) {
视言's avatar
视言 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
  int bid = threadIdx.x + blockIdx.x * blockDim.x;
  int tid = threadIdx.x;

  extern __shared__ T shared_max_data[];
  if (gridDim.x > 1) {
    shared_max_data[tid] = T(0);
    for (int i = bid; i < n; i += blockDim.x * gridDim.x) {
      T tmp = fabs(in[i]);
      if (tmp > shared_max_data[tid]) {
        shared_max_data[tid] = tmp;
      }
    }
  } else {
    if (bid < n) {
      shared_max_data[tid] = fabs(in[bid]);
    } else {
      shared_max_data[tid] = T(0);
    }
  }
  __syncthreads();

  for (int i = blockDim.x / 2; i > 0; i >>= 1) {
47
    if (tid < i && (shared_max_data[tid] < shared_max_data[tid + i])) {
视言's avatar
视言 已提交
48 49 50 51 52 53 54 55 56
      shared_max_data[tid] = shared_max_data[tid + i];
    }
    __syncthreads();
  }
  if (tid == 0) {
    out[blockIdx.x] = shared_max_data[0];
  }
}

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
template <typename T>
struct FindAbsMaxFunctor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& ctx, const T* in,
                  const int num, T* out) {
    int block = 1024;
    int grid = (block - 1 + num) / block;
    grid = (grid > block) ? block : grid;

    framework::Tensor max;
    T* max_data =
        max.mutable_data<T>(framework::make_ddim({grid}), ctx.GetPlace());
    FindAbsMaxKernel<T><<<grid, block, 1024 * sizeof(T), ctx.stream()>>>(
        in, num, max_data);
    FindAbsMaxKernel<T><<<1, block, 1024 * sizeof(T), ctx.stream()>>>(
        max_data, grid, out);
  }
};

template struct FindAbsMaxFunctor<platform::CUDADeviceContext, float>;
视言's avatar
视言 已提交
76

77
template <typename T>
78 79
__global__ void FindChannelAbsMaxKernelQuantAxis0(const T* in, const int n,
                                                  const int c, T* out) {
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
  int tid = threadIdx.x;
  int channel_size = n / c;
  const T* in_c = in + blockIdx.x * channel_size;
  extern __shared__ T shared_max_data[];
  shared_max_data[tid] = T(0);
  for (int i = tid; i < channel_size; i += blockDim.x) {
    T tmp = fabs(in_c[i]);
    if (tmp > shared_max_data[tid]) {
      shared_max_data[tid] = tmp;
    }
  }
  __syncthreads();
  for (int i = blockDim.x / 2; i > 0; i >>= 1) {
    if (tid < i && (shared_max_data[tid] < shared_max_data[tid + i])) {
      shared_max_data[tid] = shared_max_data[tid + i];
    }
    __syncthreads();
  }
  if (tid == 0) {
    out[blockIdx.x] = shared_max_data[0];
  }
}

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
template <typename T>
__global__ void FindChannelAbsMaxKernelQuantAxis1(const T* in, const int n,
                                                  const int cin, const int cout,
                                                  T* out) {
  extern __shared__ T shared_max_data[];
  int cout_wh_size = n / cin;
  int wh_size = n / (cin * cout);

  int tid = threadIdx.x;
  int bid = blockIdx.x;
  const T* in_current = in + tid * cout_wh_size + bid * wh_size;
  shared_max_data[tid] = T(0);
  for (int i = 0; i < wh_size; i++) {
    T tmp = fabs(in_current[i]);
    if (tmp > shared_max_data[tid]) {
      shared_max_data[tid] = tmp;
    }
  }
  __syncthreads();

  int len = blockDim.x;
  for (int i = (len + 1) / 2; i > 0; len = i, i = (i + 1) / 2) {
    if (tid < i && tid + i < len &&
        shared_max_data[tid] < shared_max_data[tid + i]) {
      shared_max_data[tid] = shared_max_data[tid + i];
    }
    if (i == 1) {
      i = 0;  // break the loop
    }
    __syncthreads();
  }
134
  if (tid == 0 && shared_max_data[0] > out[bid]) {
135 136 137 138
    out[bid] = shared_max_data[0];
  }
}

139 140
template <typename T>
struct FindChannelAbsMaxFunctor<platform::CUDADeviceContext, T> {
141 142 143 144 145 146 147 148 149 150 151 152
  void operator()(const platform::CUDADeviceContext& ctx,
                  const framework::Tensor& in_tensor, const int quant_axis,
                  T* out_abs_max) {
    PADDLE_ENFORCE_EQ(
        quant_axis == 0 || quant_axis == 1, true,
        platform::errors::InvalidArgument("'quant_axis' should be 0 or 1, but "
                                          "the received is %d",
                                          quant_axis));
    const int num = in_tensor.numel();
    auto in_dims = in_tensor.dims();
    const T* in_data = in_tensor.data<T>();
    if (quant_axis == 0) {
153 154
      int cout = in_dims[0];
      int grid = cout;
155 156 157
      int block = 1024;
      FindChannelAbsMaxKernelQuantAxis0<
          T><<<grid, block, block * sizeof(T), ctx.stream()>>>(
158
          in_data, num, cout, out_abs_max);
159
    } else if (quant_axis == 1) {
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
      int cin = in_dims[0];
      int cout = in_dims[1];
      int grid = cout;
      int max_threads = 1024;

      cudaMemset(out_abs_max, 0, sizeof(T) * cout);

      for (int i = 0; i < cin / max_threads; i++) {
        int block = max_threads;
        FindChannelAbsMaxKernelQuantAxis1<
            T><<<grid, block, block * sizeof(T), ctx.stream()>>>(
            in_data, num, cin, cout, out_abs_max);
        in_data += num / cin;
      }

      int block = cin % max_threads;
      if (block > 0) {
        FindChannelAbsMaxKernelQuantAxis1<
            T><<<grid, block, block * sizeof(T), ctx.stream()>>>(
            in_data, num, in_dims[0], in_dims[1], out_abs_max);
      }
181
    }
182 183 184 185 186
  }
};

template struct FindChannelAbsMaxFunctor<platform::CUDADeviceContext, float>;

视言's avatar
视言 已提交
187
template <typename T>
188 189
__global__ void ClipAndQuantKernel(const T* in, const T* scale,
                                   const int bin_cnt, const int n, T* out) {
视言's avatar
视言 已提交
190 191 192
  int bid = threadIdx.x + blockIdx.x * blockDim.x;
  int tid = threadIdx.x;

193
  T s = scale[0];
194
  T inv_s = inverse(s);
视言's avatar
视言 已提交
195
  for (int i = bid; i < n; i += blockDim.x * gridDim.x) {
196
    T x = in[i];
197 198
    T v = x > s ? s : x;
    v = v < -s ? -s : v;
199
    v = bin_cnt * inv_s * v;
200
    out[i] = round(v);
视言's avatar
视言 已提交
201 202 203
  }
}

204 205 206 207 208 209 210 211
template <typename T>
__global__ void ClipAndQuantDequantKernel(const T* in, const T* scale,
                                          const int bin_cnt, const int n,
                                          T* out) {
  int bid = threadIdx.x + blockIdx.x * blockDim.x;
  int tid = threadIdx.x;

  T s = scale[0];
212
  T inv_s = inverse(s);
213 214 215 216
  for (int i = bid; i < n; i += blockDim.x * gridDim.x) {
    T x = in[i];
    T v = x > s ? s : x;
    v = v < -s ? -s : v;
217
    v = bin_cnt * inv_s * v;
218 219 220 221
    out[i] = round(v) * s / bin_cnt;
  }
}

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
template <typename T>
struct ClipAndFakeQuantFunctor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& ctx,
                  const framework::Tensor& in, const framework::Tensor& scale,
                  const int bin_cnt, framework::Tensor* out) {
    int num = in.numel();
    int block = 1024;
    int grid = (block - 1 + num) / block;

    const T* in_data = in.data<T>();
    const T* scale_data = scale.data<T>();
    T* out_data = out->mutable_data<T>(ctx.GetPlace());

    ClipAndQuantKernel<T><<<grid, block, 0, ctx.stream()>>>(
        in_data, scale_data, bin_cnt, num, out_data);
  }
};

template struct ClipAndFakeQuantFunctor<platform::CUDADeviceContext, float>;

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
template <typename T>
struct ClipAndFakeQuantDequantFunctor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& ctx,
                  const framework::Tensor& in, const framework::Tensor& scale,
                  const int bin_cnt, framework::Tensor* out) {
    int num = in.numel();
    int block = 1024;
    int grid = (block - 1 + num) / block;

    const T* in_data = in.data<T>();
    const T* scale_data = scale.data<T>();
    T* out_data = out->mutable_data<T>(ctx.GetPlace());

    ClipAndQuantDequantKernel<T><<<grid, block, 0, ctx.stream()>>>(
        in_data, scale_data, bin_cnt, num, out_data);
  }
};

template struct ClipAndFakeQuantDequantFunctor<platform::CUDADeviceContext,
                                               float>;

263
// ChannelClipAndQuantKernel for quant_axis is 0
264
template <typename T>
265 266 267 268
__global__ void ChannelClipAndQuantKernelQuantAxis0(const T* in, const T* scale,
                                                    const int bin_cnt,
                                                    const int n, const int c,
                                                    T* out) {
269 270 271 272 273 274 275
  int tid = threadIdx.x;

  int channel_size = n / c;
  const T* in_c = in + blockIdx.x * channel_size;
  T* out_c = out + blockIdx.x * channel_size;

  T s = scale[blockIdx.x];
276 277
  T inv_s = inverse(s);

278 279 280 281
  for (int i = tid; i < channel_size; i += blockDim.x) {
    T x = in_c[i];
    T v = x > s ? s : x;
    v = v < -s ? -s : v;
282
    v = bin_cnt * inv_s * v;
283 284 285 286
    out_c[i] = round(v);
  }
}

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
// ChannelClipAndQuantKernel for quant_axis is 1
template <typename T>
__global__ void ChannelClipAndQuantKernelQuantAxis1(const T* in, const T* scale,
                                                    const int bin_cnt,
                                                    const int n, const int cin,
                                                    const int cout, T* out) {
  T s = scale[blockIdx.x % cout];
  T inv_s = inverse(s);

  int wh_size = n / (cin * cout);
  const T* in_c = in + blockIdx.x * wh_size;
  T* out_c = out + blockIdx.x * wh_size;

  for (int i = threadIdx.x; i < wh_size; i += blockDim.x) {
    T x = in_c[i];
    T v = x > s ? s : x;
    v = v < -s ? -s : v;
    v = bin_cnt * inv_s * v;
    out_c[i] = round(v);
  }
}

309 310 311 312
template <typename T>
struct ChannelClipAndFakeQuantFunctor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& ctx,
                  const framework::Tensor& in, const framework::Tensor& scale,
313
                  const int bin_cnt, const int quant_axis,
314
                  framework::Tensor* out) {
315 316 317 318 319
    PADDLE_ENFORCE_EQ(
        quant_axis == 0 || quant_axis == 1, true,
        platform::errors::InvalidArgument("'quant_axis' should be 0 or 1, but "
                                          "the received is %d",
                                          quant_axis));
320

321 322
    int num = in.numel();
    auto in_dims = in.dims();
323 324 325 326
    const T* in_data = in.data<T>();
    const T* scale_data = scale.data<T>();
    T* out_data = out->mutable_data<T>(ctx.GetPlace());

327 328 329 330 331 332 333 334 335 336 337
    if (quant_axis == 0) {
      int grid = in_dims[0];
      int block = 1024;
      ChannelClipAndQuantKernelQuantAxis0<T><<<grid, block, 0, ctx.stream()>>>(
          in_data, scale_data, bin_cnt, num, in_dims[0], out_data);
    } else if (quant_axis == 1) {
      int grid = in_dims[0] * in_dims[1];
      int block = 1024;
      ChannelClipAndQuantKernelQuantAxis1<T><<<grid, block, 0, ctx.stream()>>>(
          in_data, scale_data, bin_cnt, num, in_dims[0], in_dims[1], out_data);
    }
338 339 340 341 342 343
  }
};

template struct ChannelClipAndFakeQuantFunctor<platform::CUDADeviceContext,
                                               float>;

视言's avatar
视言 已提交
344
template <typename T>
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
__global__ void FindRangeAbsMaxAndFillArray(const T* cur_scale,
                                            const T* last_scale,
                                            const int64_t* iter,
                                            const int window_size, T* scale_arr,
                                            T* out_scale, int* need_find_max,
                                            int* out_size) {
  int it = iter[0];
  int idx = it % window_size;
  T removed = scale_arr[idx];
  T cur = cur_scale[0];
  scale_arr[idx] = cur;
  T max = last_scale[0];
  out_scale[0] = max < cur ? cur : max;
  if (fabs(removed - max) < 1e-6) {
    need_find_max[0] = 1;
    out_size[0] = it > window_size ? window_size : it;
视言's avatar
视言 已提交
361
  } else {
362
    need_find_max[0] = 0;
视言's avatar
视言 已提交
363 364 365 366
  }
}

template <typename T>
367 368 369 370 371 372
struct FindRangeAbsMaxFunctor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& ctx,
                  const framework::Tensor& cur_scale,
                  const framework::Tensor& last_scale,
                  const framework::Tensor& iter, const int window_size,
                  framework::Tensor* scales_arr, framework::Tensor* out_scale) {
373
    const auto gpu_place = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
M
minqiyang 已提交
374

375 376 377 378
    T* scale_arr = scales_arr->mutable_data<T>(gpu_place);
    T* out_scale_data = out_scale->mutable_data<T>(gpu_place);

    framework::Tensor need_find_max, out_size;
Z
Zeng Jinle 已提交
379 380
    int* find_max = need_find_max.mutable_data<int>({1}, gpu_place);
    int* out_size_data = out_size.mutable_data<int>({1}, gpu_place);
381 382 383 384 385 386 387

    FindRangeAbsMaxAndFillArray<T><<<1, 1, 0, ctx.stream()>>>(
        cur_scale.data<T>(), last_scale.data<T>(), iter.data<int64_t>(),
        window_size, scale_arr, out_scale_data, find_max, out_size_data);

    int g_find_max;
    memory::Copy(platform::CPUPlace(), &g_find_max, gpu_place, find_max,
388 389
                 sizeof(int), ctx.stream());
    ctx.Wait();
390 391 392
    if (g_find_max) {
      int len;
      memory::Copy(platform::CPUPlace(), &len, gpu_place, out_size_data,
393 394
                   sizeof(int), ctx.stream());
      ctx.Wait();
395 396
      FindAbsMaxFunctor<platform::CUDADeviceContext, T>()(ctx, scale_arr, len,
                                                          out_scale_data);
视言's avatar
视言 已提交
397 398
    }
  }
399
};
视言's avatar
视言 已提交
400

401
template struct FindRangeAbsMaxFunctor<platform::CUDADeviceContext, float>;
视言's avatar
视言 已提交
402

403 404 405 406 407 408 409
template <typename T>
struct FindMovingAverageAbsMaxFunctor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& ctx,
                  const framework::Tensor& in_accum,
                  const framework::Tensor& in_state, const T* cur_scale,
                  const float rate, framework::Tensor* out_state,
                  framework::Tensor* out_accum, framework::Tensor* out_scale) {
410
    const auto gpu_place = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
411 412 413 414

    T accum;
    T state;
    T scale;
415 416 417 418
    memory::Copy(platform::CPUPlace(), &accum, gpu_place, in_accum.data<T>(),
                 sizeof(T), ctx.stream());
    memory::Copy(platform::CPUPlace(), &state, gpu_place, in_state.data<T>(),
                 sizeof(T), ctx.stream());
419
    memory::Copy(platform::CPUPlace(), &scale, gpu_place, cur_scale, sizeof(T),
420 421
                 ctx.stream());
    ctx.Wait();
422 423 424 425 426
    state = rate * state + 1;
    accum = rate * accum + scale;
    scale = accum / state;

    memory::Copy(gpu_place, out_accum->mutable_data<T>(gpu_place),
427
                 platform::CPUPlace(), &accum, sizeof(T), ctx.stream());
428
    memory::Copy(gpu_place, out_state->mutable_data<T>(gpu_place),
429
                 platform::CPUPlace(), &state, sizeof(T), ctx.stream());
430
    memory::Copy(gpu_place, out_scale->mutable_data<T>(gpu_place),
431 432
                 platform::CPUPlace(), &scale, sizeof(T), ctx.stream());
    ctx.Wait();
433 434 435
  }
};

H
huangxu96 已提交
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
// ChannelClipAndQuantDequantKernel for quant_axis is 0
template <typename T>
__global__ void ChannelClipAndQuantDequantKernelQuantAxis0(
    const T* in, const T* scale, const int bin_cnt, const int n, const int c,
    T* out) {
  int tid = threadIdx.x;

  int channel_size = n / c;
  const T* in_c = in + blockIdx.x * channel_size;
  T* out_c = out + blockIdx.x * channel_size;

  T s = scale[blockIdx.x];
  T inv_s = inverse(s);

  for (int i = tid; i < channel_size; i += blockDim.x) {
    T x = in_c[i];
    T v = x > s ? s : x;
    v = v < -s ? -s : v;
    v = bin_cnt * inv_s * v;
    out_c[i] = round(v) * s / bin_cnt;
  }
}

// ChannelClipAndQuantDequantKernel for quant_axis is 1
template <typename T>
__global__ void ChannelClipAndQuantDequantKernelQuantAxis1(
    const T* in, const T* scale, const int bin_cnt, const int n, const int cin,
    const int cout, T* out) {
  T s = scale[blockIdx.x % cout];
  T inv_s = inverse(s);

  int wh_size = n / (cin * cout);
  const T* in_c = in + blockIdx.x * wh_size;
  T* out_c = out + blockIdx.x * wh_size;

  for (int i = threadIdx.x; i < wh_size; i += blockDim.x) {
    T x = in_c[i];
    T v = x > s ? s : x;
    v = v < -s ? -s : v;
    v = bin_cnt * inv_s * v;
    out_c[i] = round(v) * s / bin_cnt;
  }
}

template <typename T>
struct ChannelClipFakeQuantDequantFunctor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& ctx,
                  const framework::Tensor& in, const framework::Tensor& scale,
                  const int bin_cnt, const int quant_axis,
                  framework::Tensor* out) {
    // At present, channelwise quantization supports conv2d, depthwise_conv2d
    // conv2d_transpose and mul
    PADDLE_ENFORCE_EQ(
        quant_axis == 0 || quant_axis == 1, true,
        platform::errors::InvalidArgument("'quant_axis' should be 0 or 1, but "
                                          "the received is %d",
                                          quant_axis));

    int num = in.numel();
    auto in_dims = in.dims();

    const T* in_data = in.data<T>();
    const T* scale_data = scale.data<T>();
    T* out_data = out->mutable_data<T>(ctx.GetPlace());

    if (quant_axis == 0) {
      int grid = in_dims[0];
      int block = 1024;
      ChannelClipAndQuantDequantKernelQuantAxis0<
          T><<<grid, block, 0, ctx.stream()>>>(in_data, scale_data, bin_cnt,
                                               num, in_dims[0], out_data);
    } else if (quant_axis == 1) {
      int grid = in_dims[0] * in_dims[1];
      int block = 1024;

      ChannelClipAndQuantDequantKernelQuantAxis1<
          T><<<grid, block, 0, ctx.stream()>>>(
          in_data, scale_data, bin_cnt, num, in_dims[0], in_dims[1], out_data);
    }
  }
};

template struct ChannelClipFakeQuantDequantFunctor<platform::CUDADeviceContext,
                                                   float>;
520

视言's avatar
视言 已提交
521 522 523
}  // namespace operators
}  // namespace paddle

524 525 526 527
namespace ops = paddle::operators;
using CUDA = paddle::platform::CUDADeviceContext;
REGISTER_OP_CUDA_KERNEL(fake_quantize_abs_max,
                        ops::FakeQuantizeAbsMaxKernel<CUDA, float>);
528 529
REGISTER_OP_CUDA_KERNEL(fake_quantize_dequantize_abs_max,
                        ops::FakeQuantizeDequantizeAbsMaxKernel<CUDA, float>);
Z
Zhen Wang 已提交
530 531
REGISTER_OP_CUDA_KERNEL(fake_channel_wise_quantize_abs_max,
                        ops::FakeChannelWiseQuantizeAbsMaxKernel<CUDA, float>);
532 533
REGISTER_OP_CUDA_KERNEL(fake_quantize_range_abs_max,
                        ops::FakeQuantizeRangeAbsMaxKernel<CUDA, float>);
534 535 536
REGISTER_OP_CUDA_KERNEL(
    fake_quantize_moving_average_abs_max,
    ops::FakeQuantizeMovingAverageAbsMaxKernel<CUDA, float>);
Z
Zhen Wang 已提交
537 538
REGISTER_OP_CUDA_KERNEL(moving_average_abs_max_scale,
                        ops::MovingAverageAbsMaxScaleKernel<CUDA, float>);
539 540 541
REGISTER_OP_CUDA_KERNEL(
    fake_quantize_dequantize_moving_average_abs_max,
    ops::FakeQuantizeDequantizeMovingAverageAbsMaxKernel<CUDA, float>);
542 543
REGISTER_OP_CUDA_KERNEL(fake_quantize_dequantize_grad,
                        ops::FakeQuantDequantGradKernel<CUDA, float>);
H
huangxu96 已提交
544 545 546
REGISTER_OP_CUDA_KERNEL(
    fake_channel_wise_quantize_dequantize_abs_max,
    ops::FakeChannelWiseQuantizeDequantizeAbsMaxKernel<CUDA, float>);