fake_quantize_op.cu 18.5 KB
Newer Older
视言's avatar
视言 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
16
#include "paddle/fluid/memory/memcpy.h"
视言's avatar
视言 已提交
17 18 19 20 21 22 23
#include "paddle/fluid/operators/fake_quantize_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"

namespace paddle {
namespace operators {

template <typename T>
24
__global__ void FindAbsMaxKernel(const T* in, const int n, T* out) {
视言's avatar
视言 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
  int bid = threadIdx.x + blockIdx.x * blockDim.x;
  int tid = threadIdx.x;

  extern __shared__ T shared_max_data[];
  if (gridDim.x > 1) {
    shared_max_data[tid] = T(0);
    for (int i = bid; i < n; i += blockDim.x * gridDim.x) {
      T tmp = fabs(in[i]);
      if (tmp > shared_max_data[tid]) {
        shared_max_data[tid] = tmp;
      }
    }
  } else {
    if (bid < n) {
      shared_max_data[tid] = fabs(in[bid]);
    } else {
      shared_max_data[tid] = T(0);
    }
  }
  __syncthreads();

  for (int i = blockDim.x / 2; i > 0; i >>= 1) {
47
    if (tid < i && (shared_max_data[tid] < shared_max_data[tid + i])) {
视言's avatar
视言 已提交
48 49 50 51 52 53 54 55 56
      shared_max_data[tid] = shared_max_data[tid + i];
    }
    __syncthreads();
  }
  if (tid == 0) {
    out[blockIdx.x] = shared_max_data[0];
  }
}

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
template <typename T>
struct FindAbsMaxFunctor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& ctx, const T* in,
                  const int num, T* out) {
    int block = 1024;
    int grid = (block - 1 + num) / block;
    grid = (grid > block) ? block : grid;

    framework::Tensor max;
    T* max_data =
        max.mutable_data<T>(framework::make_ddim({grid}), ctx.GetPlace());
    FindAbsMaxKernel<T><<<grid, block, 1024 * sizeof(T), ctx.stream()>>>(
        in, num, max_data);
    FindAbsMaxKernel<T><<<1, block, 1024 * sizeof(T), ctx.stream()>>>(
        max_data, grid, out);
  }
};

template struct FindAbsMaxFunctor<platform::CUDADeviceContext, float>;
视言's avatar
视言 已提交
76

77
template <typename T>
78 79
__global__ void FindChannelAbsMaxKernelQuantAxis0(const T* in, const int n,
                                                  const int c, T* out) {
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
  int tid = threadIdx.x;
  int channel_size = n / c;
  const T* in_c = in + blockIdx.x * channel_size;
  extern __shared__ T shared_max_data[];
  shared_max_data[tid] = T(0);
  for (int i = tid; i < channel_size; i += blockDim.x) {
    T tmp = fabs(in_c[i]);
    if (tmp > shared_max_data[tid]) {
      shared_max_data[tid] = tmp;
    }
  }
  __syncthreads();
  for (int i = blockDim.x / 2; i > 0; i >>= 1) {
    if (tid < i && (shared_max_data[tid] < shared_max_data[tid + i])) {
      shared_max_data[tid] = shared_max_data[tid + i];
    }
    __syncthreads();
  }
  if (tid == 0) {
    out[blockIdx.x] = shared_max_data[0];
  }
}

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
template <typename T>
__global__ void FindChannelAbsMaxKernelQuantAxis1(const T* in, const int n,
                                                  const int cin, const int cout,
                                                  T* out) {
  extern __shared__ T shared_max_data[];
  int cout_wh_size = n / cin;
  int wh_size = n / (cin * cout);

  int tid = threadIdx.x;
  int bid = blockIdx.x;
  const T* in_current = in + tid * cout_wh_size + bid * wh_size;
  shared_max_data[tid] = T(0);
  for (int i = 0; i < wh_size; i++) {
    T tmp = fabs(in_current[i]);
    if (tmp > shared_max_data[tid]) {
      shared_max_data[tid] = tmp;
    }
  }
  __syncthreads();

  int len = blockDim.x;
  for (int i = (len + 1) / 2; i > 0; len = i, i = (i + 1) / 2) {
    if (tid < i && tid + i < len &&
        shared_max_data[tid] < shared_max_data[tid + i]) {
      shared_max_data[tid] = shared_max_data[tid + i];
    }
    if (i == 1) {
      i = 0;  // break the loop
    }
    __syncthreads();
  }
  if (tid == 0) {
    out[bid] = shared_max_data[0];
  }
}

139 140
template <typename T>
struct FindChannelAbsMaxFunctor<platform::CUDADeviceContext, T> {
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
  void operator()(const platform::CUDADeviceContext& ctx,
                  const framework::Tensor& in_tensor, const int quant_axis,
                  T* out_abs_max) {
    PADDLE_ENFORCE_EQ(
        quant_axis == 0 || quant_axis == 1, true,
        platform::errors::InvalidArgument("'quant_axis' should be 0 or 1, but "
                                          "the received is %d",
                                          quant_axis));
    const int num = in_tensor.numel();
    auto in_dims = in_tensor.dims();
    int channel = in_dims[quant_axis];
    const T* in_data = in_tensor.data<T>();
    if (quant_axis == 0) {
      int grid = channel;
      int block = 1024;
      FindChannelAbsMaxKernelQuantAxis0<
          T><<<grid, block, block * sizeof(T), ctx.stream()>>>(
          in_data, num, channel, out_abs_max);
    } else if (quant_axis == 1) {
      int grid = in_dims[1];
      int block = in_dims[0];
      FindChannelAbsMaxKernelQuantAxis1<
          T><<<grid, block, block * sizeof(T), ctx.stream()>>>(
          in_data, num, in_dims[0], in_dims[1], out_abs_max);
    }
166 167 168 169 170
  }
};

template struct FindChannelAbsMaxFunctor<platform::CUDADeviceContext, float>;

视言's avatar
视言 已提交
171
template <typename T>
172 173
__global__ void ClipAndQuantKernel(const T* in, const T* scale,
                                   const int bin_cnt, const int n, T* out) {
视言's avatar
视言 已提交
174 175 176
  int bid = threadIdx.x + blockIdx.x * blockDim.x;
  int tid = threadIdx.x;

177
  T s = scale[0];
178
  T inv_s = inverse(s);
视言's avatar
视言 已提交
179
  for (int i = bid; i < n; i += blockDim.x * gridDim.x) {
180
    T x = in[i];
181 182
    T v = x > s ? s : x;
    v = v < -s ? -s : v;
183
    v = bin_cnt * inv_s * v;
184
    out[i] = round(v);
视言's avatar
视言 已提交
185 186 187
  }
}

188 189 190 191 192 193 194 195
template <typename T>
__global__ void ClipAndQuantDequantKernel(const T* in, const T* scale,
                                          const int bin_cnt, const int n,
                                          T* out) {
  int bid = threadIdx.x + blockIdx.x * blockDim.x;
  int tid = threadIdx.x;

  T s = scale[0];
196
  T inv_s = inverse(s);
197 198 199 200
  for (int i = bid; i < n; i += blockDim.x * gridDim.x) {
    T x = in[i];
    T v = x > s ? s : x;
    v = v < -s ? -s : v;
201
    v = bin_cnt * inv_s * v;
202 203 204 205
    out[i] = round(v) * s / bin_cnt;
  }
}

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
template <typename T>
struct ClipAndFakeQuantFunctor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& ctx,
                  const framework::Tensor& in, const framework::Tensor& scale,
                  const int bin_cnt, framework::Tensor* out) {
    int num = in.numel();
    int block = 1024;
    int grid = (block - 1 + num) / block;

    const T* in_data = in.data<T>();
    const T* scale_data = scale.data<T>();
    T* out_data = out->mutable_data<T>(ctx.GetPlace());

    ClipAndQuantKernel<T><<<grid, block, 0, ctx.stream()>>>(
        in_data, scale_data, bin_cnt, num, out_data);
  }
};

template struct ClipAndFakeQuantFunctor<platform::CUDADeviceContext, float>;

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
template <typename T>
struct ClipAndFakeQuantDequantFunctor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& ctx,
                  const framework::Tensor& in, const framework::Tensor& scale,
                  const int bin_cnt, framework::Tensor* out) {
    int num = in.numel();
    int block = 1024;
    int grid = (block - 1 + num) / block;

    const T* in_data = in.data<T>();
    const T* scale_data = scale.data<T>();
    T* out_data = out->mutable_data<T>(ctx.GetPlace());

    ClipAndQuantDequantKernel<T><<<grid, block, 0, ctx.stream()>>>(
        in_data, scale_data, bin_cnt, num, out_data);
  }
};

template struct ClipAndFakeQuantDequantFunctor<platform::CUDADeviceContext,
                                               float>;

247
// ChannelClipAndQuantKernel for quant_axis is 0
248
template <typename T>
249 250 251 252
__global__ void ChannelClipAndQuantKernelQuantAxis0(const T* in, const T* scale,
                                                    const int bin_cnt,
                                                    const int n, const int c,
                                                    T* out) {
253 254 255 256 257 258 259
  int tid = threadIdx.x;

  int channel_size = n / c;
  const T* in_c = in + blockIdx.x * channel_size;
  T* out_c = out + blockIdx.x * channel_size;

  T s = scale[blockIdx.x];
260 261
  T inv_s = inverse(s);

262 263 264 265
  for (int i = tid; i < channel_size; i += blockDim.x) {
    T x = in_c[i];
    T v = x > s ? s : x;
    v = v < -s ? -s : v;
266
    v = bin_cnt * inv_s * v;
267 268 269 270
    out_c[i] = round(v);
  }
}

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
// ChannelClipAndQuantKernel for quant_axis is 1
template <typename T>
__global__ void ChannelClipAndQuantKernelQuantAxis1(const T* in, const T* scale,
                                                    const int bin_cnt,
                                                    const int n, const int cin,
                                                    const int cout, T* out) {
  T s = scale[blockIdx.x % cout];
  T inv_s = inverse(s);

  int wh_size = n / (cin * cout);
  const T* in_c = in + blockIdx.x * wh_size;
  T* out_c = out + blockIdx.x * wh_size;

  for (int i = threadIdx.x; i < wh_size; i += blockDim.x) {
    T x = in_c[i];
    T v = x > s ? s : x;
    v = v < -s ? -s : v;
    v = bin_cnt * inv_s * v;
    out_c[i] = round(v);
  }
}

293 294 295 296
template <typename T>
struct ChannelClipAndFakeQuantFunctor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& ctx,
                  const framework::Tensor& in, const framework::Tensor& scale,
297
                  const int bin_cnt, const int quant_axis,
298
                  framework::Tensor* out) {
299 300 301 302 303
    PADDLE_ENFORCE_EQ(
        quant_axis == 0 || quant_axis == 1, true,
        platform::errors::InvalidArgument("'quant_axis' should be 0 or 1, but "
                                          "the received is %d",
                                          quant_axis));
304

305 306
    int num = in.numel();
    auto in_dims = in.dims();
307 308 309 310
    const T* in_data = in.data<T>();
    const T* scale_data = scale.data<T>();
    T* out_data = out->mutable_data<T>(ctx.GetPlace());

311 312 313 314 315 316 317 318 319 320 321
    if (quant_axis == 0) {
      int grid = in_dims[0];
      int block = 1024;
      ChannelClipAndQuantKernelQuantAxis0<T><<<grid, block, 0, ctx.stream()>>>(
          in_data, scale_data, bin_cnt, num, in_dims[0], out_data);
    } else if (quant_axis == 1) {
      int grid = in_dims[0] * in_dims[1];
      int block = 1024;
      ChannelClipAndQuantKernelQuantAxis1<T><<<grid, block, 0, ctx.stream()>>>(
          in_data, scale_data, bin_cnt, num, in_dims[0], in_dims[1], out_data);
    }
322 323 324 325 326 327
  }
};

template struct ChannelClipAndFakeQuantFunctor<platform::CUDADeviceContext,
                                               float>;

视言's avatar
视言 已提交
328
template <typename T>
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
__global__ void FindRangeAbsMaxAndFillArray(const T* cur_scale,
                                            const T* last_scale,
                                            const int64_t* iter,
                                            const int window_size, T* scale_arr,
                                            T* out_scale, int* need_find_max,
                                            int* out_size) {
  int it = iter[0];
  int idx = it % window_size;
  T removed = scale_arr[idx];
  T cur = cur_scale[0];
  scale_arr[idx] = cur;
  T max = last_scale[0];
  out_scale[0] = max < cur ? cur : max;
  if (fabs(removed - max) < 1e-6) {
    need_find_max[0] = 1;
    out_size[0] = it > window_size ? window_size : it;
视言's avatar
视言 已提交
345
  } else {
346
    need_find_max[0] = 0;
视言's avatar
视言 已提交
347 348 349 350
  }
}

template <typename T>
351 352 353 354 355 356
struct FindRangeAbsMaxFunctor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& ctx,
                  const framework::Tensor& cur_scale,
                  const framework::Tensor& last_scale,
                  const framework::Tensor& iter, const int window_size,
                  framework::Tensor* scales_arr, framework::Tensor* out_scale) {
357
    const auto gpu_place = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
M
minqiyang 已提交
358

359 360 361 362
    T* scale_arr = scales_arr->mutable_data<T>(gpu_place);
    T* out_scale_data = out_scale->mutable_data<T>(gpu_place);

    framework::Tensor need_find_max, out_size;
Z
Zeng Jinle 已提交
363 364
    int* find_max = need_find_max.mutable_data<int>({1}, gpu_place);
    int* out_size_data = out_size.mutable_data<int>({1}, gpu_place);
365 366 367 368 369 370 371

    FindRangeAbsMaxAndFillArray<T><<<1, 1, 0, ctx.stream()>>>(
        cur_scale.data<T>(), last_scale.data<T>(), iter.data<int64_t>(),
        window_size, scale_arr, out_scale_data, find_max, out_size_data);

    int g_find_max;
    memory::Copy(platform::CPUPlace(), &g_find_max, gpu_place, find_max,
372 373
                 sizeof(int), ctx.stream());
    ctx.Wait();
374 375 376
    if (g_find_max) {
      int len;
      memory::Copy(platform::CPUPlace(), &len, gpu_place, out_size_data,
377 378
                   sizeof(int), ctx.stream());
      ctx.Wait();
379 380
      FindAbsMaxFunctor<platform::CUDADeviceContext, T>()(ctx, scale_arr, len,
                                                          out_scale_data);
视言's avatar
视言 已提交
381 382
    }
  }
383
};
视言's avatar
视言 已提交
384

385
template struct FindRangeAbsMaxFunctor<platform::CUDADeviceContext, float>;
视言's avatar
视言 已提交
386

387 388 389 390 391 392 393
template <typename T>
struct FindMovingAverageAbsMaxFunctor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& ctx,
                  const framework::Tensor& in_accum,
                  const framework::Tensor& in_state, const T* cur_scale,
                  const float rate, framework::Tensor* out_state,
                  framework::Tensor* out_accum, framework::Tensor* out_scale) {
394
    const auto gpu_place = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
395 396 397 398

    T accum;
    T state;
    T scale;
399 400 401 402
    memory::Copy(platform::CPUPlace(), &accum, gpu_place, in_accum.data<T>(),
                 sizeof(T), ctx.stream());
    memory::Copy(platform::CPUPlace(), &state, gpu_place, in_state.data<T>(),
                 sizeof(T), ctx.stream());
403
    memory::Copy(platform::CPUPlace(), &scale, gpu_place, cur_scale, sizeof(T),
404 405
                 ctx.stream());
    ctx.Wait();
406 407 408 409 410
    state = rate * state + 1;
    accum = rate * accum + scale;
    scale = accum / state;

    memory::Copy(gpu_place, out_accum->mutable_data<T>(gpu_place),
411
                 platform::CPUPlace(), &accum, sizeof(T), ctx.stream());
412
    memory::Copy(gpu_place, out_state->mutable_data<T>(gpu_place),
413
                 platform::CPUPlace(), &state, sizeof(T), ctx.stream());
414
    memory::Copy(gpu_place, out_scale->mutable_data<T>(gpu_place),
415 416
                 platform::CPUPlace(), &scale, sizeof(T), ctx.stream());
    ctx.Wait();
417 418 419
  }
};

H
huangxu96 已提交
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
// ChannelClipAndQuantDequantKernel for quant_axis is 0
template <typename T>
__global__ void ChannelClipAndQuantDequantKernelQuantAxis0(
    const T* in, const T* scale, const int bin_cnt, const int n, const int c,
    T* out) {
  int tid = threadIdx.x;

  int channel_size = n / c;
  const T* in_c = in + blockIdx.x * channel_size;
  T* out_c = out + blockIdx.x * channel_size;

  T s = scale[blockIdx.x];
  T inv_s = inverse(s);

  for (int i = tid; i < channel_size; i += blockDim.x) {
    T x = in_c[i];
    T v = x > s ? s : x;
    v = v < -s ? -s : v;
    v = bin_cnt * inv_s * v;
    out_c[i] = round(v) * s / bin_cnt;
  }
}

// ChannelClipAndQuantDequantKernel for quant_axis is 1
template <typename T>
__global__ void ChannelClipAndQuantDequantKernelQuantAxis1(
    const T* in, const T* scale, const int bin_cnt, const int n, const int cin,
    const int cout, T* out) {
  T s = scale[blockIdx.x % cout];
  T inv_s = inverse(s);

  int wh_size = n / (cin * cout);
  const T* in_c = in + blockIdx.x * wh_size;
  T* out_c = out + blockIdx.x * wh_size;

  for (int i = threadIdx.x; i < wh_size; i += blockDim.x) {
    T x = in_c[i];
    T v = x > s ? s : x;
    v = v < -s ? -s : v;
    v = bin_cnt * inv_s * v;
    out_c[i] = round(v) * s / bin_cnt;
  }
}

template <typename T>
struct ChannelClipFakeQuantDequantFunctor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& ctx,
                  const framework::Tensor& in, const framework::Tensor& scale,
                  const int bin_cnt, const int quant_axis,
                  framework::Tensor* out) {
    // At present, channelwise quantization supports conv2d, depthwise_conv2d
    // conv2d_transpose and mul
    PADDLE_ENFORCE_EQ(
        quant_axis == 0 || quant_axis == 1, true,
        platform::errors::InvalidArgument("'quant_axis' should be 0 or 1, but "
                                          "the received is %d",
                                          quant_axis));

    int num = in.numel();
    auto in_dims = in.dims();

    const T* in_data = in.data<T>();
    const T* scale_data = scale.data<T>();
    T* out_data = out->mutable_data<T>(ctx.GetPlace());

    if (quant_axis == 0) {
      int grid = in_dims[0];
      int block = 1024;
      ChannelClipAndQuantDequantKernelQuantAxis0<
          T><<<grid, block, 0, ctx.stream()>>>(in_data, scale_data, bin_cnt,
                                               num, in_dims[0], out_data);
    } else if (quant_axis == 1) {
      int grid = in_dims[0] * in_dims[1];
      int block = 1024;

      ChannelClipAndQuantDequantKernelQuantAxis1<
          T><<<grid, block, 0, ctx.stream()>>>(
          in_data, scale_data, bin_cnt, num, in_dims[0], in_dims[1], out_data);
    }
  }
};

template struct ChannelClipFakeQuantDequantFunctor<platform::CUDADeviceContext,
                                                   float>;
504

视言's avatar
视言 已提交
505 506 507
}  // namespace operators
}  // namespace paddle

508 509 510 511
namespace ops = paddle::operators;
using CUDA = paddle::platform::CUDADeviceContext;
REGISTER_OP_CUDA_KERNEL(fake_quantize_abs_max,
                        ops::FakeQuantizeAbsMaxKernel<CUDA, float>);
512 513
REGISTER_OP_CUDA_KERNEL(fake_quantize_dequantize_abs_max,
                        ops::FakeQuantizeDequantizeAbsMaxKernel<CUDA, float>);
Z
Zhen Wang 已提交
514 515
REGISTER_OP_CUDA_KERNEL(fake_channel_wise_quantize_abs_max,
                        ops::FakeChannelWiseQuantizeAbsMaxKernel<CUDA, float>);
516 517
REGISTER_OP_CUDA_KERNEL(fake_quantize_range_abs_max,
                        ops::FakeQuantizeRangeAbsMaxKernel<CUDA, float>);
518 519 520
REGISTER_OP_CUDA_KERNEL(
    fake_quantize_moving_average_abs_max,
    ops::FakeQuantizeMovingAverageAbsMaxKernel<CUDA, float>);
Z
Zhen Wang 已提交
521 522
REGISTER_OP_CUDA_KERNEL(moving_average_abs_max_scale,
                        ops::MovingAverageAbsMaxScaleKernel<CUDA, float>);
523 524 525
REGISTER_OP_CUDA_KERNEL(
    fake_quantize_dequantize_moving_average_abs_max,
    ops::FakeQuantizeDequantizeMovingAverageAbsMaxKernel<CUDA, float>);
526 527
REGISTER_OP_CUDA_KERNEL(fake_quantize_dequantize_grad,
                        ops::FakeQuantDequantGradKernel<CUDA, float>);
H
huangxu96 已提交
528 529 530
REGISTER_OP_CUDA_KERNEL(
    fake_channel_wise_quantize_dequantize_abs_max,
    ops::FakeChannelWiseQuantizeDequantizeAbsMaxKernel<CUDA, float>);