lstmp_op.cc 14.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/lstmp_op.h"

namespace paddle {
namespace operators {

class LSTMPOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Input"),
                   "Input(Input) of LSTMP should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Weight"),
                   "Input(Weight) of LSTMP should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("ProjWeight"),
                   "Input(ProjWeight) of LSTMP should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Bias"),
                   "Input(Bias) of LSTMP should not be null.");

    PADDLE_ENFORCE(ctx->HasOutput("Projection"),
                   "Output(Projection) of LSTMP should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Cell"),
                   "Output(Cell) of LSTMP should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("BatchGate"),
                   "Output(BatchGate) of LSTMP should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("BatchCellPreAct"),
                   "Output(BatchGate) of LSTMP should not be null.");
42 43
    PADDLE_ENFORCE(ctx->HasOutput("BatchHidden"),
                   "Output(BatchHidden) of LSTMP should not be null.");
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

    auto in_dims = ctx->GetInputDim("Input");
    PADDLE_ENFORCE_EQ(in_dims.size(), 2, "Input(X)'s rank must be 2.");

    int frame_size = in_dims[1] / 4;
    auto w_dims = ctx->GetInputDim("Weight");
    auto proj_dims = ctx->GetInputDim("ProjWeight");
    PADDLE_ENFORCE_EQ(w_dims.size(), 2,
                      "The rank of Input(Weight) should be 2.");
    PADDLE_ENFORCE_EQ(w_dims[0], proj_dims[1],
                      "The first dimension of Input(Weight) "
                      "should be %d.",
                      proj_dims[1]);
    PADDLE_ENFORCE_EQ(w_dims[1], 4 * frame_size,
                      "The second dimension of Input(Weight) "
                      "should be 4 * %d.",
                      frame_size);

    PADDLE_ENFORCE_EQ(proj_dims.size(), 2,
                      "The rank of Input(ProjWeight) should be 2.");
    PADDLE_ENFORCE_EQ(proj_dims[0], frame_size,
                      "The first dimension of Input(ProjWeight) "
                      "should be %d.",
                      frame_size);

69 70 71 72 73 74 75 76 77 78 79 80
    if (ctx->HasInput("H0")) {
      PADDLE_ENFORCE(ctx->HasInput("C0"),
                     "Input(C0) and Input(H0) of LSTMP should not "
                     "be null at the same time.");
      auto h_dims = ctx->GetInputDim("H0");
      auto c_dims = ctx->GetInputDim("C0");
      PADDLE_ENFORCE(h_dims == c_dims,
                     "The dimension of Input(H0) and Input(C0) "
                     "should be the same.");
      ctx->SetOutputDim("OrderedP0", {h_dims[0], proj_dims[1]});
    }

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    auto b_dims = ctx->GetInputDim("Bias");
    PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
    PADDLE_ENFORCE_EQ(b_dims[0], 1,
                      "The first dimension of Input(Bias) should be 1.");

    if (ctx->Attrs().Get<bool>("use_peepholes")) {
      PADDLE_ENFORCE_EQ(b_dims[1], 7 * frame_size,
                        "The second dimension of Input(Bias) should be "
                        "7 * %d if enable peepholes connection",
                        frame_size);
    } else {
      PADDLE_ENFORCE_EQ(b_dims[1], 4 * frame_size,
                        "The second dimension of Input(Bias) should be "
                        "4 * %d if disable peepholes connection",
                        frame_size);
    }

    framework::DDim out_dims({in_dims[0], frame_size});
    framework::DDim proj_out_dims({in_dims[0], proj_dims[1]});
    ctx->SetOutputDim("Projection", proj_out_dims);
    ctx->SetOutputDim("Cell", out_dims);
    ctx->SetOutputDim("BatchGate", in_dims);
    ctx->SetOutputDim("BatchCellPreAct", out_dims);
104
    ctx->SetOutputDim("BatchHidden", out_dims);
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    ctx->ShareLoD("Input", "Projection");
    ctx->ShareLoD("Input", "Cell");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<framework::LoDTensor>("Input")->type()),
        ctx.device_context());
  }
};

class LSTMPOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  LSTMPOpMaker(OpProto* proto, OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("Input",
Y
Yibing Liu 已提交
123
             "(LoDTensor) the input for sequence data, which supports "
124 125 126 127 128 129 130 131 132 133 134
             "variable-time length input sequence. The underlying tensor in "
             "this LoDTensor is a matrix with shape (T X 4D), where T is the "
             "total time steps in this mini-batch, D is the hidden size.");
    AddInput("H0",
             "(Tensor, optional) the initial hidden state is an optional "
             "input. This is a tensor with shape (N x D), where N is the "
             "batch size and D is the hidden size.")
        .AsDispensable();
    AddInput("C0",
             "(Tensor, optional) the initial cell state is an optional "
             "input. This is a tensor with shape (N x D), where N is the "
Y
Yibing Liu 已提交
135 136
             "batch size. Only one of `H0` and `C0` can be NULL at the same "
             "time.")
137 138 139
        .AsDispensable();
    AddInput("Weight",
             "(Tensor) the learnable hidden-hidden weights."
Y
Yibing Liu 已提交
140 141
             " - The shape is (P x 4D), where P is the projection layer size "
             "and  D is the hidden size."
142 143
             " - Weight = {W_cr, W_ir, W_fr, W_or}");
    AddInput("ProjWeight",
Y
Yibing Liu 已提交
144
             "(Tensor) the learnable weight of the projection layer."
145
             " - The shape is (D x P), where P is the recurrent projection "
Y
Yibing Liu 已提交
146 147
             "layer size and  D is the hidden size."
             " - ProjWeight = {W_rh}");
148
    AddInput("Bias",
Y
Yibing Liu 已提交
149 150 151
             "(Tensor) the learnable biases, which contains two parts: "
             "input-hidden biases and peephole connections weights if "
             "setting `use_peepholes` to `True`. "
152 153 154 155 156 157 158 159
             "1. `use_peepholes = False` "
             " - The shape is (1 x 4D). "
             " - Bias = {b_c, b_i, b_f, b_o}."
             "2. `use_peepholes = True` "
             " - The shape is (1 x 7D). "
             " - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
    AddOutput("Projection",
              "(LoDTensor) the projection of the hidden state of LSTMP "
Y
Yibing Liu 已提交
160
              "operator. The shape is (T x P), and LoD is the same with the "
161 162 163 164 165 166
              "`Input`.");
    AddOutput("Cell",
              "(LoDTensor) the cell state of LSTMP operator. "
              "The shape is (T x D), and lod is the same with the `Input`.");
    AddOutput("BatchGate",
              "(LoDTensor) This LoDTensor contains input gate, forget gate "
Y
Yibing Liu 已提交
167 168 169 170 171
              "and output gate after the activations. This LoDTensor has the "
              "same shape as the reorganized input, which is also be called "
              "batch input. The LoD size is 2. The first-level LoD is the "
              "batch offsets and the second contains the indices, which "
              "denotes the position of reorganized sequence in the raw input.")
172 173
        .AsIntermediate();
    AddOutput("BatchCellPreAct",
Y
Yibing Liu 已提交
174 175 176
              "(LoDTensor) the pre-activation cell state reorganized in batch. "
              "This LoDTensor is obtained in the forward and used in the "
              "backward.")
177
        .AsIntermediate();
178
    AddOutput("BatchHidden",
Y
Yibing Liu 已提交
179 180 181
              "(LoDTensor) the hidden state reorganized in batch. "
              "This LoDTensor is obtained in the forward and used in the "
              "backward.")
182 183 184 185 186 187
        .AsIntermediate();
    AddOutput("OrderedP0",
              "(Tensor) the projection of the initial hidden state "
              "H0. This is a tensor with shape (N x P), where N is the "
              "batch size and P is the hidden size.")
        .AsIntermediate();
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
    AddAttr<bool>("use_peepholes",
                  "(bool, defalut: True) "
                  "whether to enable diagonal/peephole connections.")
        .SetDefault(true);
    AddAttr<bool>("is_reverse",
                  "(bool, defalut: False) "
                  "whether to compute reversed LSTMP.")
        .SetDefault(false);
    AddAttr<std::string>(
        "gate_activation",
        "(string, default: sigmoid)"
        "The activation for input gate, forget gate and output "
        "gate, `sigmoid` by default.")
        .SetDefault("sigmoid")
        .InEnum({"sigmoid", "tanh", "relu", "identity"});
    AddAttr<std::string>("cell_activation",
                         "(string, default: tanh)"
                         "The activation for cell output, `tanh` by defalut.")
        .SetDefault("tanh")
        .InEnum({"sigmoid", "tanh", "relu", "identity"});
    AddAttr<std::string>("candidate_activation",
                         "(string, default: tanh)"
                         "The activation for candidate hidden state, "
                         "`tanh` by default.")
        .SetDefault("tanh")
        .InEnum({"sigmoid", "tanh", "relu", "identity"});
Y
Yibing Liu 已提交
214 215 216 217 218 219 220
    AddAttr<bool>("share_cell_act",
                  "(bool, defalut: True) "
                  "whether to share the activation of cell output with the "
                  "projection layer. When set to `False`, the projection "
                  "is simple linear, otherwise it will go through an "
                  "activation function same as `cell_activation`.")
        .SetDefault(true);
221
    AddComment(R"DOC(
Y
Yibing Liu 已提交
222
Long-Short Term Memory with recurrent Projection layer (LSTMP) Operator.
223

Y
Yibing Liu 已提交
224 225 226 227 228
LSTMP has a separate projection layer after the LSTM layer, projecting the 
original hidden state to a lower-dimensional one, which is proposed to reduce 
the number of total parameters and furthermore computational complexity for 
the LSTM, espeacially for the case that the size of output units is relative 
large (https://research.google.com/pubs/archive/43905.pdf). 
229 230 231 232 233 234 235
The formula is as follows:

$$
i_t = \sigma(W_{ix}x_{t} + W_{ih}r_{t-1} + W_{ic}c_{t-1} + b_i) \\

f_t = \sigma(W_{fx}x_{t} + W_{fh}r_{t-1} + W_{fc}c_{t-1} + b_f) \\

Y
Yibing Liu 已提交
236
\tilde{c_t} = act_g(W_{cx}x_t + W_{ch}r_{t-1} + b_c) \\
237 238 239

o_t = \sigma(W_{ox}x_{t} + W_{oh}r_{t-1} + W_{oc}c_t + b_o) \\

Y
Yibing Liu 已提交
240 241
c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c_t}

242 243
h_t = o_t \odot act_h(c_t)

Y
Yibing Liu 已提交
244
r_t = \overline{act_h}(W_{rh}h_t)
245 246 247 248 249 250 251
$$

where the W terms denote weight matrices (e.g. $W_{xi}$ is the matrix
of weights from the input gate to the input), $W_{ic}, W_{fc}, W_{oc}$
are diagonal weight matrices for peephole connections. In our implementation,
we use vectors to reprenset these diagonal weight matrices. The b terms
denote bias vectors ($b_i$ is the input gate bias vector), $\sigma$
Y
Yibing Liu 已提交
252
is the activation, such as logistic sigmoid function, and
253 254
$i, f, o$ and $c$ are the input gate, forget gate, output gate,
and cell activation vectors, respectively, all of which have the same size as
Y
Yibing Liu 已提交
255 256 257 258
the cell output activation vector $h$. Here $h$ is usually called the hidden 
state and $r$ denotes its recurrent projection. And $\tilde{c_t}$ is also 
called the candidate hidden state, whose computation is based on the current 
input and previous hidden state.
259 260 261

The $\odot$ is the element-wise product of the vectors. $act_g$ and $act_h$
are the cell input and cell output activation functions and `tanh` is usually
Y
Yibing Liu 已提交
262 263 264
used for them. $\overline{act_h}$ is the activation function for the projection 
layer. When `share_cell_act` set to `False`, $\overline{act_h}$ is an
identity activation, otherwise it will be same as $act_h$.
265 266 267

Note that these $W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}$
operations on the input $x_{t}$ are NOT included in this operator.
Y
Yibing Liu 已提交
268
Users can choose to use fully-connected operator before LSTMP operator.
269 270 271 272 273 274 275 276 277 278 279 280

)DOC");
  }
};

class LSTMPGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Input"),
                   "Input(Input) of LSTMP should not be null.");
281 282
    PADDLE_ENFORCE(ctx->HasInput("Projection"),
                   "Input(Projection) of LSTMP should not be null.");
283 284 285 286
    PADDLE_ENFORCE(ctx->HasInput("Cell"),
                   "Input(Cell) of LSTMP should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Weight"),
                   "Input(Weight) of LSTMP should not be null.");
287 288
    PADDLE_ENFORCE(ctx->HasInput("ProjWeight"),
                   "Input(ProjWeight) of LSTMP should not be null.");
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
    PADDLE_ENFORCE(ctx->HasInput("Bias"),
                   "Input(Bias) of LSTMP should not be null.");

    PADDLE_ENFORCE(ctx->HasInput("BatchGate"),
                   "Input(BatchGate) of LSTMP should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("BatchCellPreAct"),
                   "Input(BatchGate) of LSTMP should not be null.");

    auto SetOutGradDim = [&ctx](const std::string& name) {
      auto g_name = framework::GradVarName(name);
      if (ctx->HasOutput(g_name))
        ctx->SetOutputDim(g_name, ctx->GetInputDim(name));
    };

    SetOutGradDim("Input");
    SetOutGradDim("Weight");
305
    SetOutGradDim("ProjWeight");
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
    SetOutGradDim("Bias");
    SetOutGradDim("H0");
    SetOutGradDim("C0");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<framework::LoDTensor>("Input")->type()),
        ctx.device_context());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(lstmp, ops::LSTMPOp, ops::LSTMPOpMaker, lstmp_grad,
            ops::LSTMPGradOp);
REGISTER_OP_CPU_KERNEL(
    lstmp, ops::LSTMPKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LSTMPKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    lstmp_grad, ops::LSTMPGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LSTMPGradKernel<paddle::platform::CPUDeviceContext, double>);