lstmp_op.cc 13.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/lstmp_op.h"

namespace paddle {
namespace operators {

class LSTMPOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Input"),
                   "Input(Input) of LSTMP should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Weight"),
                   "Input(Weight) of LSTMP should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("ProjWeight"),
                   "Input(ProjWeight) of LSTMP should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Bias"),
                   "Input(Bias) of LSTMP should not be null.");

    PADDLE_ENFORCE(ctx->HasOutput("Projection"),
                   "Output(Projection) of LSTMP should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Cell"),
                   "Output(Cell) of LSTMP should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("BatchGate"),
                   "Output(BatchGate) of LSTMP should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("BatchCellPreAct"),
                   "Output(BatchGate) of LSTMP should not be null.");
42 43
    PADDLE_ENFORCE(ctx->HasOutput("BatchHidden"),
                   "Output(BatchHidden) of LSTMP should not be null.");
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

    auto in_dims = ctx->GetInputDim("Input");
    PADDLE_ENFORCE_EQ(in_dims.size(), 2, "Input(X)'s rank must be 2.");

    int frame_size = in_dims[1] / 4;
    auto w_dims = ctx->GetInputDim("Weight");
    auto proj_dims = ctx->GetInputDim("ProjWeight");
    PADDLE_ENFORCE_EQ(w_dims.size(), 2,
                      "The rank of Input(Weight) should be 2.");
    PADDLE_ENFORCE_EQ(w_dims[0], proj_dims[1],
                      "The first dimension of Input(Weight) "
                      "should be %d.",
                      proj_dims[1]);
    PADDLE_ENFORCE_EQ(w_dims[1], 4 * frame_size,
                      "The second dimension of Input(Weight) "
                      "should be 4 * %d.",
                      frame_size);

    PADDLE_ENFORCE_EQ(proj_dims.size(), 2,
                      "The rank of Input(ProjWeight) should be 2.");
    PADDLE_ENFORCE_EQ(proj_dims[0], frame_size,
                      "The first dimension of Input(ProjWeight) "
                      "should be %d.",
                      frame_size);

69 70 71 72 73 74 75 76 77 78 79 80
    if (ctx->HasInput("H0")) {
      PADDLE_ENFORCE(ctx->HasInput("C0"),
                     "Input(C0) and Input(H0) of LSTMP should not "
                     "be null at the same time.");
      auto h_dims = ctx->GetInputDim("H0");
      auto c_dims = ctx->GetInputDim("C0");
      PADDLE_ENFORCE(h_dims == c_dims,
                     "The dimension of Input(H0) and Input(C0) "
                     "should be the same.");
      ctx->SetOutputDim("OrderedP0", {h_dims[0], proj_dims[1]});
    }

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    auto b_dims = ctx->GetInputDim("Bias");
    PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
    PADDLE_ENFORCE_EQ(b_dims[0], 1,
                      "The first dimension of Input(Bias) should be 1.");

    if (ctx->Attrs().Get<bool>("use_peepholes")) {
      PADDLE_ENFORCE_EQ(b_dims[1], 7 * frame_size,
                        "The second dimension of Input(Bias) should be "
                        "7 * %d if enable peepholes connection",
                        frame_size);
    } else {
      PADDLE_ENFORCE_EQ(b_dims[1], 4 * frame_size,
                        "The second dimension of Input(Bias) should be "
                        "4 * %d if disable peepholes connection",
                        frame_size);
    }

    framework::DDim out_dims({in_dims[0], frame_size});
    framework::DDim proj_out_dims({in_dims[0], proj_dims[1]});
    ctx->SetOutputDim("Projection", proj_out_dims);
    ctx->SetOutputDim("Cell", out_dims);
    ctx->SetOutputDim("BatchGate", in_dims);
    ctx->SetOutputDim("BatchCellPreAct", out_dims);
104
    ctx->SetOutputDim("BatchHidden", out_dims);
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    ctx->ShareLoD("Input", "Projection");
    ctx->ShareLoD("Input", "Cell");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<framework::LoDTensor>("Input")->type()),
        ctx.device_context());
  }
};

class LSTMPOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  LSTMPOpMaker(OpProto* proto, OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("Input",
             "(LoDTensor) the first input is a LodTensor, which support "
             "variable-time length input sequence. The underlying tensor in "
             "this LoDTensor is a matrix with shape (T X 4D), where T is the "
             "total time steps in this mini-batch, D is the hidden size.");
    AddInput("H0",
             "(Tensor, optional) the initial hidden state is an optional "
             "input. This is a tensor with shape (N x D), where N is the "
             "batch size and D is the hidden size.")
        .AsDispensable();
    AddInput("C0",
             "(Tensor, optional) the initial cell state is an optional "
             "input. This is a tensor with shape (N x D), where N is the "
             "batch size. `H0` and `C0` can be NULL but only at the same time")
        .AsDispensable();
    AddInput("Weight",
             "(Tensor) the learnable hidden-hidden weights."
             " - The shape is (P x 4D), where P is the recurrent projection "
             "layer size and  D is the hidden size. "
             " - Weight = {W_cr, W_ir, W_fr, W_or}");
    AddInput("ProjWeight",
             "(Tensor) the learnable weight `W_rh` of the projection layer."
             " - The shape is (D x P), where P is the recurrent projection "
             "layer size and  D is the hidden size.");
    AddInput("Bias",
             "(Tensor) the learnable weights, which contains two parts: "
             "input-hidden bias weight and peephole connections weight if "
             "setting `use_peepholes` True. "
             "1. `use_peepholes = False` "
             " - The shape is (1 x 4D). "
             " - Bias = {b_c, b_i, b_f, b_o}."
             "2. `use_peepholes = True` "
             " - The shape is (1 x 7D). "
             " - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
    AddOutput("Projection",
              "(LoDTensor) the projection of the hidden state of LSTMP "
              "operator. The shape is (T x P), and lod is the same with the "
              "`Input`.");
    AddOutput("Cell",
              "(LoDTensor) the cell state of LSTMP operator. "
              "The shape is (T x D), and lod is the same with the `Input`.");
    AddOutput("BatchGate",
              "(LoDTensor) This LoDTensor contains input gate, forget gate "
              "and output gate after the nonlinear computation. This "
              "LoDTensor has the same shape as the reorganized input, which "
              "is also be called batch input. The LoD size is 2. The first "
              "LoD is the batch offsets and the second LoD contains the "
              "indexes, which denote the position of reorganized sequence "
              "in the raw input.")
        .AsIntermediate();
    AddOutput("BatchCellPreAct",
              "(LoDTensor) This LoDTensor is obtained in the forward and used "
              "in the backward.")
        .AsIntermediate();
176 177 178 179 180 181 182 183 184
    AddOutput("BatchHidden",
              "(LoDTensor) This LoDTensor is obtained in the forward and used "
              "in the backward.")
        .AsIntermediate();
    AddOutput("OrderedP0",
              "(Tensor) the projection of the initial hidden state "
              "H0. This is a tensor with shape (N x P), where N is the "
              "batch size and P is the hidden size.")
        .AsIntermediate();
185 186 187 188 189 190 191 192
    AddAttr<bool>("use_peepholes",
                  "(bool, defalut: True) "
                  "whether to enable diagonal/peephole connections.")
        .SetDefault(true);
    AddAttr<bool>("is_reverse",
                  "(bool, defalut: False) "
                  "whether to compute reversed LSTMP.")
        .SetDefault(false);
193 194 195 196 197 198
    AddAttr<bool>("share_cell_act",
                  "(bool, defalut: True) "
                  "whether to share activation with cell output. "
                  "If false, the projection would be linear, else "
                  "through an activation same with the cell output.")
        .SetDefault(true);
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
    AddAttr<std::string>(
        "gate_activation",
        "(string, default: sigmoid)"
        "The activation for input gate, forget gate and output "
        "gate, `sigmoid` by default.")
        .SetDefault("sigmoid")
        .InEnum({"sigmoid", "tanh", "relu", "identity"});
    AddAttr<std::string>("cell_activation",
                         "(string, default: tanh)"
                         "The activation for cell output, `tanh` by defalut.")
        .SetDefault("tanh")
        .InEnum({"sigmoid", "tanh", "relu", "identity"});
    AddAttr<std::string>("candidate_activation",
                         "(string, default: tanh)"
                         "The activation for candidate hidden state, "
                         "`tanh` by default.")
        .SetDefault("tanh")
        .InEnum({"sigmoid", "tanh", "relu", "identity"});
    AddComment(R"DOC(
Long-Short Term Memory with Recurrent Projection (LSTMP) Operator.

220
LSTMP is stand LSTM appended by a recurrent projection layer to reduce the
221 222 223 224 225 226 227 228 229 230 231 232 233 234
number of parameters, espeacially when the output size is relative large. 
The formula is as follows:

$$
i_t = \sigma(W_{ix}x_{t} + W_{ih}r_{t-1} + W_{ic}c_{t-1} + b_i) \\

f_t = \sigma(W_{fx}x_{t} + W_{fh}r_{t-1} + W_{fc}c_{t-1} + b_f) \\

c_t = f_t \odot c_{t-1} + i_t \odot act_g(W_{cx}x_t + W_{ch}r_{t-1} + b_c) \\

o_t = \sigma(W_{ox}x_{t} + W_{oh}r_{t-1} + W_{oc}c_t + b_o) \\

h_t = o_t \odot act_h(c_t)

235
r_t = act_{h'}(W_{rh}h_t)
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
$$

where the W terms denote weight matrices (e.g. $W_{xi}$ is the matrix
of weights from the input gate to the input), $W_{ic}, W_{fc}, W_{oc}$
are diagonal weight matrices for peephole connections. In our implementation,
we use vectors to reprenset these diagonal weight matrices. The b terms
denote bias vectors ($b_i$ is the input gate bias vector), $\sigma$
is the non-line activations, such as logistic sigmoid function, and
$i, f, o$ and $c$ are the input gate, forget gate, output gate,
and cell activation vectors, respectively, all of which have the same size as
the cell output activation vector $h$. $r$ denotes the recurrent projection 
layer.

The $\odot$ is the element-wise product of the vectors. $act_g$ and $act_h$
are the cell input and cell output activation functions and `tanh` is usually
251 252
used for them. If `share_cell_act` setted to `False`, $act_h'$ will be linear
else will be same with $act_h$.
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268

Note that these $W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}$
operations on the input $x_{t}$ are NOT included in this operator.
Users can choose to use fully-connect operator before LSTMP operator.

)DOC");
  }
};

class LSTMPGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Input"),
                   "Input(Input) of LSTMP should not be null.");
269 270
    PADDLE_ENFORCE(ctx->HasInput("Projection"),
                   "Input(Projection) of LSTMP should not be null.");
271 272 273 274
    PADDLE_ENFORCE(ctx->HasInput("Cell"),
                   "Input(Cell) of LSTMP should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Weight"),
                   "Input(Weight) of LSTMP should not be null.");
275 276
    PADDLE_ENFORCE(ctx->HasInput("ProjWeight"),
                   "Input(ProjWeight) of LSTMP should not be null.");
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
    PADDLE_ENFORCE(ctx->HasInput("Bias"),
                   "Input(Bias) of LSTMP should not be null.");

    PADDLE_ENFORCE(ctx->HasInput("BatchGate"),
                   "Input(BatchGate) of LSTMP should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("BatchCellPreAct"),
                   "Input(BatchGate) of LSTMP should not be null.");

    auto SetOutGradDim = [&ctx](const std::string& name) {
      auto g_name = framework::GradVarName(name);
      if (ctx->HasOutput(g_name))
        ctx->SetOutputDim(g_name, ctx->GetInputDim(name));
    };

    SetOutGradDim("Input");
    SetOutGradDim("Weight");
293
    SetOutGradDim("ProjWeight");
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
    SetOutGradDim("Bias");
    SetOutGradDim("H0");
    SetOutGradDim("C0");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<framework::LoDTensor>("Input")->type()),
        ctx.device_context());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(lstmp, ops::LSTMPOp, ops::LSTMPOpMaker, lstmp_grad,
            ops::LSTMPGradOp);
REGISTER_OP_CPU_KERNEL(
    lstmp, ops::LSTMPKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LSTMPKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    lstmp_grad, ops::LSTMPGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LSTMPGradKernel<paddle::platform::CPUDeviceContext, double>);