collective.py 94.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import os
17 18
import pickle
import io
19
from datetime import timedelta
20
from ..fluid.layer_helper import LayerHelper
21
from ..fluid.framework import Variable
22
from ..fluid.framework import in_dygraph_mode
23
from ..fluid.framework import OpProtoHolder
J
Jiabin Yang 已提交
24
from ..fluid.framework import _non_static_mode
25
from ..fluid.framework import _in_legacy_dygraph
26
from ..fluid.framework import convert_np_dtype_to_dtype_
J
Jiangxinz 已提交
27
from ..fluid.framework import _varbase_creator
28 29 30 31
from ..fluid.data_feeder import convert_dtype
from ..fluid.data_feeder import check_variable_and_dtype
from ..fluid.data_feeder import check_type
from ..fluid.data_feeder import check_dtype
32 33
from ..fluid.layers.tensor import fill_constant
from ..fluid.layers import utils
B
Baibaifan 已提交
34
from ..fluid.dygraph import layers
35 36 37 38
from ..fluid.dygraph.parallel import prepare_context
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
W
wanghuancoder 已提交
39
from paddle import _C_ops
J
Jiangxinz 已提交
40
import paddle.fluid.dygraph_utils as dygraph_utils
41
import contextlib
42

43
__all__ = []
44 45 46


class ReduceOp:
L
lilong12 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
    """
    Specify the type of operation used for element-wise reductions.
    It should be one of the following values:

        ReduceOp.SUM

        ReduceOp.MAX

        ReduceOp.MIN

        ReduceOp.PROD

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle
            from paddle.distributed import ReduceOp
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.all_reduce(data, op=ReduceOp.SUM)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
    """
78 79 80 81
    SUM = 0
    MAX = 1
    MIN = 2
    PROD = 3
82
    AVG = 4
83 84


K
kuizhiqing 已提交
85 86 87 88
class Group():
    """
    The abstract representation of group.
    """
89

90
    def __init__(self, rank, rank_num, id=0, ranks=[], pg=None, name=None):
91 92
        self.rank = rank
        self.nranks = rank_num
K
kuizhiqing 已提交
93 94
        self.id = id
        self.ranks = ranks
95 96
        self.pg = pg
        self.name = name
K
kuizhiqing 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110

    def is_member(self):
        if self.rank < 0:
            return False
        if self.nranks < 2:
            return False
        return True

    def get_group_rank(self, rank):
        if self.is_member() and rank in self.ranks:
            return self.ranks.index(rank)
        else:
            return -1

111 112 113 114
    @property
    def process_group(self):
        return self.pg

115 116 117 118
    def __repr__(self):
        debug_str = "rank: {}, nranks: {}, id: {}, ranks: ".format(
            self.rank, self.nranks, self.id)
        debug_str += ", ".join(map(str, self.ranks))
119 120
        debug_str += "; name: "
        debug_str += self.name if self.name else "None"
121 122
        return debug_str

K
kuizhiqing 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137

_global_env = None


def _get_global_env():
    global _global_env
    if not _global_env:
        _global_env = paddle.distributed.ParallelEnv()
    return _global_env


# group map : the map of all group, 0 for GlobalGroup
# Dict[int, Group]
_group_map = {}

138 139 140 141
# group map by name : the map of all groups from their names
# Dict[name, Group]
_group_map_by_name = {}

142 143 144 145
# backend map by group : the map of all backend from their groups
# Dict[group, backend]
_group_map_backend = {}

146 147 148
# Name of the default group for init_parallel_env
_default_group_name = "_default_pg"

149
_valid_backend_list = ['nccl', 'gloo', 'hccl', 'heter', 'xccl']
150 151 152
_default_store = None  # the default tcp store
_default_backend = None

K
kuizhiqing 已提交
153

L
lilong12 已提交
154 155 156 157 158 159 160 161 162 163
def _set_default_backend(backend):
    global _default_backend
    _default_backend = backend


def _set_default_store(store):
    global _default_store
    _default_store = store


K
kuizhiqing 已提交
164 165 166 167
def _get_group_map():
    global _group_map
    if not _group_map:
        genv = _get_global_env()
168 169 170
        _group_map[0] = Group(genv.rank,
                              genv.world_size,
                              ranks=list(range(genv.world_size)))
K
kuizhiqing 已提交
171 172 173 174 175 176 177
    return _group_map


def _get_global_group():
    return _get_group_map()[0]


178 179 180 181 182 183
def _get_group_map_by_name():
    global _group_map_by_name
    return _group_map_by_name


def _get_default_group():
L
lilong12 已提交
184
    global _group_map_by_name
185 186
    assert is_initialized(), ("Call paddle.distributed.init_parallel_env first "
                              "to initialize the distributed environment.")
187 188 189
    return _get_group_map_by_name()[_default_group_name]


L
lilong12 已提交
190 191 192 193 194 195 196 197 198 199 200 201
def _set_group_map(gid, group):
    global _group_map
    assert gid not in _group_map
    _group_map[gid] = group


def _set_group_map_by_name(name, group):
    global _group_map_by_name
    assert name not in _group_map_by_name
    _group_map_by_name[name] = group


202 203 204 205 206 207
def _set_group_map_backend(group, backend):
    global _group_map_backend
    assert group not in _group_map_backend
    _group_map_backend[group] = backend


K
kuizhiqing 已提交
208 209 210 211
def _new_ring_id():
    return len(_get_group_map()) + max(_get_global_env().nrings, 9)


212 213 214 215 216 217 218 219 220 221 222 223 224
def _get_reduce_op(reduce_op, func_name):
    if reduce_op == ReduceOp.SUM:
        return core.ReduceOp.SUM
    elif reduce_op == ReduceOp.MAX:
        return core.ReduceOp.MAX
    elif reduce_op == ReduceOp.MIN:
        return core.ReduceOp.MIN
    elif reduce_op == ReduceOp.PROD:
        return core.ReduceOp.PRODUCT
    else:
        raise ValueError("Unknown reduce_op type for {}.".format(func_name))


K
kuizhiqing 已提交
225 226 227 228 229 230
def get_group(id=0):
    """

    Get group instance by group id.

    Args:
K
kuizhiqing 已提交
231
        id (int): the group id. Default value is 0.
K
kuizhiqing 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245

    Returns:
        Group: the group instance.

    Examples:
        .. code-block:: python

            ...
            gid = paddle.distributed.new_group([2,4,6])
            paddle.distributed.get_group(gid.id)

    """

    gm = _get_group_map()
J
Jiangxinz 已提交
246
    return gm[id] if id in gm else None
K
kuizhiqing 已提交
247 248


249 250 251 252 253 254
def _new_process_group_impl(backend,
                            store,
                            rank,
                            world_size,
                            group_name,
                            pg_options,
L
lilong12 已提交
255 256 257
                            group_id=0,
                            src_rank=None,
                            dst_rank=None):
258
    pg = None
259
    genv = _get_global_env()
L
lilong12 已提交
260 261 262 263
    if backend != 'heter':
        assert src_rank is None and dst_rank is None, (
            "src_rank and dst_rank "
            "can only be set for heter backend.")
L
lilong12 已提交
264
    assert backend in _valid_backend_list, "Unsupported backend: %s." % backend
265
    if backend == "gloo":
266 267
        place = core.CPUPlace()
        pg = core.ProcessGroupGloo(store, rank, world_size, place, group_id)
268
    elif backend == "nccl":
269 270
        place = core.CUDAPlace(genv.device_id)
        pg = core.ProcessGroupNCCL(store, rank, world_size, place, group_id)
271
    elif backend == "hccl":
272 273
        place = core.NPUPlace(genv.device_id)
        pg = core.ProcessGroupHCCL(store, rank, world_size, place, group_id)
274 275 276
    elif backend == "xccl":
        place = core.CustomPlace(genv.device_type, genv.device_id)
        pg = core.ProcessGroupCustom(store, rank, world_size, place, group_id)
277
    elif backend == "heter":
278 279 280 281 282
        place = None
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(genv.device_id)
        elif core.is_compiled_with_npu():
            place = core.NPUPlace(genv.device_id)
283 284 285 286 287 288 289 290 291 292 293 294 295
        cluster_id = int(os.getenv("CLUSTER_ID", "-1"))
        assert cluster_id >= 0, "please set the CLUSTER_ID variable."
        cluster_size = os.getenv("CLUSTER_SIZE", None)
        assert cluster_size, "please set the CLUSTER_SIZE variable."
        cluster_size = cluster_size.split(",")
        cluster_size = [int(s) for s in cluster_size]
        switch_ep = os.getenv("CLUSTER_SWITCH", None)
        assert switch_ep, "please set the CLUSTER_SWITCH variable."
        cluster_size_cumsum = np.cumsum(cluster_size)
        cluster_offset = 0 if cluster_id == 0 else cluster_size_cumsum[
            cluster_id - 1]
        global_rank = cluster_offset + rank
        global_world_size = cluster_size_cumsum[-1]
296 297 298 299 300 301 302 303 304 305 306 307 308
        pg = core.ProcessGroupHeter(store,
                                    rank=global_rank,
                                    world_size=global_world_size,
                                    place=place,
                                    gid=group_id,
                                    local_rank=rank,
                                    local_size=world_size,
                                    gloo_rank=cluster_id,
                                    gloo_size=len(cluster_size),
                                    with_switch=True,
                                    switch_endpoint=switch_ep,
                                    src_rank=src_rank,
                                    dst_rank=dst_rank)
309 310 311 312

    return pg


S
ShenLiang 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
def barrier(group=None):
    """

    Barrier among all participators in the group.

    Args:
        group (Group): The group instance return by new_group or None for global default group.

    Returns:
        None.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            paddle.distributed.barrier()
    """
    if group is not None and not group.is_member():
        return

L
lilong12 已提交
337
    if in_dygraph_mode():
338 339 340 341 342
        group = _get_default_group() if group is None else group
        task = group.process_group.barrier()
        task.wait()
        return

S
ShenLiang 已提交
343 344 345
    ring_id = 0 if group is None else group.id

    temp = fill_constant([1], dtype="int32", value="1")
J
Jiabin Yang 已提交
346
    if _non_static_mode():
W
wanghuancoder 已提交
347
        return _C_ops.barrier(temp, temp, 'ring_id', ring_id)
W
wanghuancoder 已提交
348 349 350

    op_type = 'barrier'

S
ShenLiang 已提交
351 352 353
    if not isinstance(ring_id, int):
        raise ValueError("The type of 'group' for barrier must be int.")
    helper = LayerHelper(op_type, **locals())
354 355 356 357
    helper.append_op(type=op_type,
                     inputs={'X': [temp]},
                     outputs={'Out': [temp]},
                     attrs={'ring_id': ring_id})
S
ShenLiang 已提交
358 359


L
lilong12 已提交
360 361 362 363 364 365 366
# _custom_gid provides a way for users to
# set the group id, which is usually useful
# to be compatible with the static mode.
_custom_gid = None


def _set_custom_gid(gid):
367
    global _custom_gid
L
lilong12 已提交
368 369 370
    _custom_gid = gid


K
kuizhiqing 已提交
371 372 373
def new_group(ranks=None, backend=None):
    """

K
kuizhiqing 已提交
374
    Creates a new distributed communication group.
K
kuizhiqing 已提交
375 376

    Args:
K
kuizhiqing 已提交
377
        ranks (list): The global ranks of group members.
K
kuizhiqing 已提交
378 379 380
        backend (str): The backend used to create group, only nccl is supported now.

    Returns:
K
kuizhiqing 已提交
381
        Group: The group instance.
K
kuizhiqing 已提交
382 383 384 385 386 387 388

    Examples:
        .. code-block:: python

            import paddle

            paddle.distributed.init_parallel_env()
K
kuizhiqing 已提交
389 390 391
            tindata = paddle.randn(shape=[2, 3])
            gp = paddle.distributed.new_group([2,4,6])
            paddle.distributed.all_reduce(tindata, group=gp, use_calc_stream=False)
K
kuizhiqing 已提交
392 393

    """
394
    global _custom_gid
395
    global _group_map
L
lilong12 已提交
396
    if in_dygraph_mode():
397
        global _default_group_name
L
lilong12 已提交
398
        gid = _custom_gid if _custom_gid else _new_ring_id()
399
        group_name = _default_group_name + str(gid)
L
lilong12 已提交
400
        if backend != 'heter' and (ranks is None or len(ranks) > 1):
401 402 403 404 405 406 407 408 409
            global_group = _get_default_group()
            global_rank = global_group.rank
            global_ranks = global_group.ranks
            backend = _default_backend if backend is None else backend
            if ranks is None:
                ranks = global_ranks
            assert len(ranks) <= len(global_ranks), (
                "Size of new group must be less than or "
                "equal to that of the default global group.")
410 411
        size = len(ranks)
        ranks = sorted(ranks)
L
lilong12 已提交
412 413 414 415
        if backend == 'heter' or (size > 1 and global_rank in ranks):
            rank = 0 if backend == 'heter' else ranks.index(global_rank)
            src_rank = ranks[0] if backend == 'heter' else None
            dst_rank = ranks[1] if backend == 'heter' else None
416 417 418 419 420 421 422 423 424
            pg = _new_process_group_impl(backend,
                                         _default_store,
                                         rank,
                                         size,
                                         group_name,
                                         pg_options=None,
                                         group_id=gid,
                                         src_rank=src_rank,
                                         dst_rank=dst_rank)
425 426 427 428 429 430
        else:
            rank = -1
            pg = None
        group = Group(rank, size, id=gid, ranks=ranks, pg=pg, name=group_name)
        _group_map_by_name[group_name] = group
        _group_map[gid] = group
431
        _group_map_backend[group] = backend
432

433
        # TODO(shenliang03): This is a temporary solution to solve the problem of
434
        # hang caused by tcp
435
        paddle.distributed.barrier(group=group)
436
        return group
K
kuizhiqing 已提交
437 438 439 440 441 442 443 444 445 446 447 448 449 450

    if not backend:
        backend = 'nccl'
    assert backend == 'nccl', ("backend other than nccl is not supported yet")

    genv = _get_global_env()
    global_rank = genv.rank

    ring_id = _new_ring_id()

    if global_rank not in ranks:
        gp = Group(-1, -1, ring_id, ranks)
        _group_map[ring_id] = gp
    else:
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
        ranks = sorted(ranks)
        group_rank = ranks.index(global_rank)
        group_size = len(ranks)
        gp = Group(group_rank, group_size, ring_id, ranks)
        _group_map[ring_id] = gp

        if group_size >= 2:
            strategy = core.ParallelStrategy()
            strategy.nranks = group_size
            strategy.local_rank = group_rank
            strategy.trainer_endpoints = [
                genv.trainer_endpoints[i] for i in ranks
            ]
            strategy.current_endpoint = genv.current_endpoint
            strategy.nrings = 1

            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(genv.device_id)
                core.NCCLParallelContext(strategy,
                                         place).init_with_ring_id(ring_id)
471 472 473 474
            elif core.is_compiled_with_npu():
                place = core.NPUPlace(genv.device_id)
                core.HCCLParallelContext(strategy,
                                         place).init_with_ring_id(ring_id)
475 476 477 478
            elif core.is_compiled_with_mlu():
                place = core.MLUPlace(genv.device_id)
                core.CNCLParallelContext(strategy,
                                         place).init_with_ring_id(ring_id)
479 480 481 482 483
            else:
                assert False, ("no cuda device found")
        else:
            return gp

484
    # TODO(shenliang03): This is a temporary solution to solve the problem of
485
    # hang caused by cross-creation of new_group
486
    tmp = paddle.to_tensor(
J
Jiabin Yang 已提交
487
        [1], dtype="int32") if _non_static_mode() else fill_constant(
488
            [0], dtype="int32", value="1")
489 490
    paddle.distributed.all_reduce(tmp, use_calc_stream=True)
    paddle.distributed.wait(tmp)
K
kuizhiqing 已提交
491 492
    return gp

493

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
def is_initialized():
    """

    Check whether the distributed environment has been initialized

    Returns (bool): `True` if distributed environment has been initialized, otherwise `False`.

    Examples:
        .. code-block:: python

            # required: distributed
            import paddle

            print(paddle.distributed.is_initialized())
            # False

            paddle.distributed.init_parallel_env()
            print(paddle.distributed.is_initialized())
            # True

    """
    global _group_map_by_name
    return _default_group_name in _group_map_by_name


def destroy_process_group(group=None):
    """
    Destroy a given group for communication

    Args:
        group (ProcessGroup, optional): The group to be destroyed. All of process groups, including 
                                        the default group, will be destroyed and the distributed 
                                        environment will be deinitialized.
    
    Returns : None

    Examples:
        .. code-block:: python

            # required: distributed
            import paddle

            paddle.distributed.init_parallel_env()
            group = paddle.distributed.new_group([0, 1])

            paddle.distributed.destroy_process_group(group)
            print(paddle.distributed.is_initialized())
            # True
            paddle.distributed.destroy_process_group()
            print(paddle.distributed.is_initialized())
            # False

    """
    global _group_map
    global _group_map_by_name

    pg = _get_default_group() if group is None else group
    assert _group_map.get(pg.id, None) is not None, "Invalid group."

    if group is None:
        _group_map.clear()
        _group_map_by_name.clear()
        _group_map_backend.clear()
    else:
        del _group_map[pg.id]
        del _group_map_by_name[pg.name]
        del _group_map_backend[pg]


K
kuizhiqing 已提交
563 564 565 566 567 568 569 570
def wait(tensor, group=None, use_calc_stream=True):
    """

    wait to sync stream for group.

    Args:
        tensor (Tensor): The Tensor used before sync.
        group (Group): The Group instance to perform sync.
K
kuizhiqing 已提交
571 572
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
K
kuizhiqing 已提交
573 574 575 576 577 578 579 580 581 582

    Returns:
        None.

    Examples:
        .. code-block:: python

            import paddle

            paddle.distributed.init_parallel_env()
K
kuizhiqing 已提交
583
            tindata = paddle.randn(shape=[2, 3])
K
kuizhiqing 已提交
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
            paddle.distributed.all_reduce(tindata, use_calc_stream=True)
            paddle.distributed.wait(tindata)

    """

    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id

    if use_calc_stream:
        _sync_calc_stream(tensor)
    else:
        _sync_comm_stream(tensor, ring_id)


def _sync_calc_stream(tensor):

J
Jiabin Yang 已提交
602
    if _non_static_mode():
W
wanghuancoder 已提交
603
        return _C_ops.c_sync_calc_stream(tensor, tensor)
K
kuizhiqing 已提交
604 605 606 607 608 609 610

    op_type = 'c_sync_calc_stream'

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
611 612
        outputs={'Out': [tensor]},
    )
613

614

K
kuizhiqing 已提交
615
def _sync_comm_stream(tensor, ring_id=0):
616

J
Jiabin Yang 已提交
617
    if _non_static_mode():
W
wanghuancoder 已提交
618
        return _C_ops.c_sync_comm_stream([tensor], [tensor], 'ring_id', ring_id)
619

K
kuizhiqing 已提交
620
    op_type = 'c_sync_comm_stream'
621

K
kuizhiqing 已提交
622 623 624 625 626
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
627 628
        attrs={'ring_id': ring_id},
    )
K
kuizhiqing 已提交
629 630 631


def broadcast(tensor, src, group=None, use_calc_stream=True):
632 633 634
    """

    Broadcast a tensor from the source to all others.
635 636 637 638 639 640 641
    As shown below, 4 GPUs each start 4 processes and GPU0 owns data 0. Through broadcast operator,
    the data 0 will be sent to all GPUs from GPU0.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/broadcast.png
        :width: 800
        :alt: broadcast
        :align: center
642 643 644 645 646

    Args:
        tensor (Tensor): The Tensor to send if current rank is the source, or the tensor to receive otherwise. Its data type
            should be float16, float32, float64, int32 or int64.
        src (int): The source rank.
K
kuizhiqing 已提交
647
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
648 649
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
650 651 652 653 654 655 656

    Returns:
        None.

    Examples:
        .. code-block:: python

657
            # required: distributed
658 659 660 661 662 663 664 665 666 667 668 669 670 671
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.broadcast(data, 1)
            out = data.numpy()
            # [[1, 2, 3], [1, 2, 3]]
672
    """
K
kuizhiqing 已提交
673 674 675 676 677 678 679

    if group is not None and not group.is_member():
        return

    if not isinstance(src, int):
        raise ValueError("src should be int.")

L
lilong12 已提交
680
    if in_dygraph_mode():
681 682 683 684 685 686 687 688 689 690 691
        group = _get_default_group() if group is None else group
        gsrc = group.get_group_rank(src)
        assert gsrc >= 0, ("src rank out of group, need global rank")
        task = group.process_group.broadcast(tensor, gsrc)
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task

    ring_id = ring_id = 0 if group is None else group.id
K
kuizhiqing 已提交
692
    gsrc = src if group is None else group.get_group_rank(src)
K
kuizhiqing 已提交
693
    assert gsrc >= 0, ("src rank out of group, need global rank")
K
kuizhiqing 已提交
694

J
Jiabin Yang 已提交
695
    if _non_static_mode():
W
wanghuancoder 已提交
696 697 698
        return _C_ops.c_broadcast(tensor, tensor, 'root', gsrc,
                                  'use_calc_stream', use_calc_stream, 'ring_id',
                                  ring_id)
699 700 701 702 703 704 705

    op_type = 'c_broadcast'
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'broadcast')

    helper = LayerHelper(op_type, **locals())
706 707 708 709 710 711 712 713
    helper.append_op(type=op_type,
                     inputs={'X': [tensor]},
                     outputs={'Out': [tensor]},
                     attrs={
                         'root': gsrc,
                         'use_calc_stream': use_calc_stream,
                         'ring_id': ring_id,
                     })
714 715


K
kuizhiqing 已提交
716
def all_reduce(tensor, op=ReduceOp.SUM, group=None, use_calc_stream=True):
717 718 719
    """

    Reduce a tensor over all ranks so that all get the result.
720 721 722 723 724 725 726 727
    As shown below, 4 GPUs each start 4 processes and the data on each GPU is represnted
    by the GPU number. The reduce operator is sum. Through all_reduce operator, 
    each GPU will have the sum of the data from all GPUs.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/allreduce.png
        :width: 800
        :alt: all_reduce
        :align: center
728 729 730 731

    Args:
        tensor (Tensor): The input Tensor. It also works as the output Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
K
kuizhiqing 已提交
732
        op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.Min|ReduceOp.PROD): Optional. The operation used. Default value is ReduceOp.SUM.
K
kuizhiqing 已提交
733
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
734 735
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
736 737 738 739 740 741 742

    Returns:
        None.

    Examples:
        .. code-block:: python

743
            # required: distributed
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
            import numpy as np
            import paddle
            from paddle.distributed import ReduceOp
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.all_reduce(data)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
759
    """
K
kuizhiqing 已提交
760 761 762
    if group is not None and not group.is_member():
        return

L
lilong12 已提交
763
    if in_dygraph_mode():
764
        op_type = _get_reduce_op(op, "all_reduce")
765 766 767 768 769 770 771 772
        group = _get_default_group() if group is None else group
        task = group.process_group.allreduce(tensor, op_type)
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task

K
kuizhiqing 已提交
773
    ring_id = 0 if group is None else group.id
J
Jiabin Yang 已提交
774
    if _non_static_mode():
775
        if op == ReduceOp.SUM:
W
wanghuancoder 已提交
776 777
            return _C_ops.c_allreduce_sum_(tensor, 'use_calc_stream',
                                           use_calc_stream, 'ring_id', ring_id)
778
        elif op == ReduceOp.MAX:
W
wanghuancoder 已提交
779 780
            return _C_ops.c_allreduce_max_(tensor, 'use_calc_stream',
                                           use_calc_stream, 'ring_id', ring_id)
781
        elif op == ReduceOp.MIN:
W
wanghuancoder 已提交
782 783
            return _C_ops.c_allreduce_min_(tensor, 'use_calc_stream',
                                           use_calc_stream, 'ring_id', ring_id)
784
        elif op == ReduceOp.PROD:
W
wanghuancoder 已提交
785 786
            return _C_ops.c_allreduce_prod_(tensor, 'use_calc_stream',
                                            use_calc_stream, 'ring_id', ring_id)
787 788 789 790 791 792 793 794 795 796 797 798 799 800
        else:
            raise ValueError("Unknown parameter: {}.".format(op))

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'all_reduce')
    if op == ReduceOp.SUM:
        op_type = 'c_allreduce_sum'
    elif op == ReduceOp.MAX:
        op_type = 'c_allreduce_max'
    elif op == ReduceOp.MIN:
        op_type = 'c_allreduce_min'
    elif op == ReduceOp.PROD:
        op_type = 'c_allreduce_prod'
K
kuizhiqing 已提交
801 802
    if not isinstance(ring_id, int):
        raise ValueError("The type of 'ring_id' for all_reduce should be int.")
803
    helper = LayerHelper(op_type, **locals())
804 805 806 807 808 809 810
    helper.append_op(type=op_type,
                     inputs={'X': [tensor]},
                     outputs={'Out': [tensor]},
                     attrs={
                         'ring_id': ring_id,
                         'use_calc_stream': use_calc_stream
                     })
811 812


K
kuizhiqing 已提交
813
def reduce(tensor, dst, op=ReduceOp.SUM, group=None, use_calc_stream=True):
814 815
    """

816 817 818 819 820 821 822 823
    Reduce a tensor to the destination from all others. As shown below, 4 GPUs each start 4 processes and the data on each GPU is respresnted
    by the GPU number. The destination of the reduce operator is GPU0 and the process is sum. Through reduce operator,
    the GPU0 will owns the sum of all data from all GPUs.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/reduce.png
        :width: 800
        :alt: reduce
        :align: center
824 825 826 827 828

    Args:
        tensor (Tensor): The output Tensor for the destination and the input Tensor otherwise. Its data type
            should be float16, float32, float64, int32 or int64.
        dst (int): The destination rank id.
K
kuizhiqing 已提交
829
        op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.Min|ReduceOp.PROD): Optional. The operation used. Default value is ReduceOp.SUM.
K
kuizhiqing 已提交
830
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
831 832
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
833 834 835 836 837 838 839

    Returns:
        None.

    Examples:
        .. code-block:: python

840
            # required: distributed
841 842 843 844 845 846 847 848 849 850 851 852 853 854
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.reduce(data, 0)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
855
    """
K
kuizhiqing 已提交
856 857 858
    if group is not None and not group.is_member():
        return

L
lilong12 已提交
859
    if in_dygraph_mode():
860
        op_type = _get_reduce_op(op, "reduce")
861 862 863 864 865 866 867 868 869
        group = _get_default_group() if group is None else group
        gdst = group.get_group_rank(dst)
        assert gdst >= 0, ("dst rank out of group, need global rank")
        task = group.process_group.reduce(tensor, gdst, op_type)
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task
K
kuizhiqing 已提交
870 871 872

    ring_id = 0 if group is None else group.id
    gdst = dst if group is None else group.get_group_rank(dst)
K
kuizhiqing 已提交
873
    assert gdst >= 0, ("dst rank out of group, need global rank")
K
kuizhiqing 已提交
874

J
Jiabin Yang 已提交
875
    if _non_static_mode():
876
        if op == ReduceOp.SUM:
W
wanghuancoder 已提交
877 878 879
            return _C_ops.c_reduce_sum(tensor, tensor, 'use_calc_stream',
                                       use_calc_stream, 'ring_id', ring_id,
                                       'root_id', gdst)
880
        elif op == ReduceOp.MAX:
W
wanghuancoder 已提交
881 882 883
            return _C_ops.c_reduce_max(tensor, tensor, 'use_calc_stream',
                                       use_calc_stream, 'ring_id', ring_id,
                                       'root_id', gdst)
884
        elif op == ReduceOp.MIN:
W
wanghuancoder 已提交
885 886 887
            return _C_ops.c_reduce_min(tensor, tensor, 'use_calc_stream',
                                       use_calc_stream, 'ring_id', ring_id,
                                       'root_id', gdst)
888
        elif op == ReduceOp.PROD:
W
wanghuancoder 已提交
889 890 891
            return _C_ops.c_reduce_prod(tensor, tensor, 'use_calc_stream',
                                        use_calc_stream, 'ring_id', ring_id,
                                        'root_id', gdst)
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
        else:
            raise ValueError("Unknown parameter: {}.".format(op))

    op_type = 'c_reduce'
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'all_reduce')

    if op == ReduceOp.SUM:
        op_type = 'c_reduce_sum'
    elif op == ReduceOp.MAX:
        op_type = 'c_reduce_max'
    elif op == ReduceOp.MIN:
        op_type = 'c_reduce_min'
    elif op == ReduceOp.PROD:
        op_type = 'c_reduce_prod'

    helper = LayerHelper(op_type, **locals())
910 911 912 913 914 915 916 917
    helper.append_op(type=op_type,
                     inputs={'X': [tensor]},
                     outputs={'Out': [tensor]},
                     attrs={
                         'ring_id': ring_id,
                         'use_calc_stream': use_calc_stream,
                         'root_id': gdst,
                     })
918 919


K
kuizhiqing 已提交
920
def all_gather(tensor_list, tensor, group=None, use_calc_stream=True):
921 922
    """

923 924 925 926 927 928 929 930 931
    Gather tensors from all participators and all get the result. As shown
    below, 4 GPUs each start 4 processes and the data on each GPU is represnted
    by the GPU number. Through the all_gather operator, each GPU will have data
    from all GPUs.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/allgather.png
        :width: 800
        :alt: all_gather
        :align: center
932 933 934

    Args:
        tensor_list (list): A list of output Tensors. Every element in the list must be a Tensor whose data type
935
            should be float16, float32, float64, int32, int64, int8, uint8, bool, complex64 or complex128.
936
        tensor (Tensor): The Tensor to send. Its data type
937
            should be float16, float32, float64, int32, int64, int8, uint8, bool, complex64 or complex128.
K
kuizhiqing 已提交
938
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
939 940
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
941 942 943 944 945 946 947

    Returns:
        None.

    Examples:
        .. code-block:: python

948
            # required: distributed
949 950 951 952 953 954 955
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            tensor_list = []
            if paddle.distributed.ParallelEnv().local_rank == 0:
956
                data1 = paddle.to_tensor([[4, 5, 6], [4, 5, 6]])
957 958
                paddle.distributed.all_gather(tensor_list, data1)
            else:
959
                data2 = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
960
                paddle.distributed.all_gather(tensor_list, data2)
961
    """
K
kuizhiqing 已提交
962 963 964
    if group is not None and not group.is_member():
        return

965 966 967 968 969 970 971 972 973 974 975
    def convert_to_complex(list_of_tensor):
        list_of_complex = []
        for tensor in list_of_tensor:
            list_of_complex.append(paddle.as_complex(tensor))
        return list_of_complex

    is_input_complex = (tensor.dtype == paddle.complex64
                        or tensor.dtype == paddle.complex128)
    if is_input_complex:
        tensor = paddle.as_real(tensor)

L
lilong12 已提交
976
    if in_dygraph_mode():
977
        group = _get_default_group() if group is None else group
978 979 980 981 982 983
        if len(tensor_list) == 0:
            tensor_shape = list(tensor.shape)
            tensor_shape[0] *= group.nranks
            out = paddle.empty(tensor_shape, tensor.dtype)
        else:
            out = paddle.concat(tensor_list, axis=0)
984 985 986
        task = group.process_group.all_gather(tensor, out)
        task.wait()
        tensor_list.clear()
987 988 989 990 991
        list_of_tensor = paddle.split(out, group.nranks, 0)
        if is_input_complex:
            tensor_list.extend(convert_to_complex(list_of_tensor))
        else:
            tensor_list.extend(list_of_tensor)
992 993
        return

K
kuizhiqing 已提交
994 995 996
    ring_id = 0 if group is None else group.id
    nranks = _get_global_group().nranks if group is None else group.nranks

J
Jiabin Yang 已提交
997
    if _non_static_mode():
998 999
        out = _C_ops.c_allgather(tensor, 'use_calc_stream', use_calc_stream,
                                 'ring_id', ring_id, 'nranks', nranks)
1000
    else:
1001 1002 1003
        op_type = 'c_allgather'
        helper = LayerHelper(op_type, **locals())
        out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
1004 1005 1006 1007
        if not isinstance(tensor_list, list):
            raise ValueError("The type of 'tensor_list' for all_gather "
                             "should be list.")
        for elem in tensor_list:
1008 1009 1010 1011 1012 1013 1014 1015
            check_variable_and_dtype(elem, 'tensor_list', [
                'float16', 'float32', 'float64', 'int32', 'int64', 'bool',
                'int8', 'uint8', 'complex64', 'complex128'
            ], 'all_gather')
        check_variable_and_dtype(tensor, 'tensor', [
            'float16', 'float32', 'float64', 'int32', 'int64', 'bool', 'int8',
            'uint8', 'complex64', 'complex128'
        ], 'all_gather')
1016 1017 1018 1019 1020 1021 1022 1023
        helper.append_op(type=op_type,
                         inputs={'X': [tensor]},
                         outputs={'Out': [out]},
                         attrs={
                             'ring_id': ring_id,
                             'use_calc_stream': use_calc_stream,
                             'nranks': nranks
                         })
1024

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
    list_of_tensor = paddle.split(out, nranks, 0)
    if is_input_complex:
        tensor_list.extend(convert_to_complex(list_of_tensor))
    else:
        tensor_list.extend(list_of_tensor)


def _convert_object_to_tensor(obj):
    _pickler = pickle.Pickler
    f = io.BytesIO()
    _pickler(f).dump(obj)
    data = np.frombuffer(f.getvalue(), dtype=np.uint8)
    tensor = paddle.to_tensor(data)
1038
    return tensor, tensor.numel()
1039 1040


1041
def _convert_tensor_to_object(tensor, len_of_tensor):
1042
    _unpickler = pickle.Unpickler
1043
    return _unpickler(io.BytesIO(tensor.numpy()[:len_of_tensor])).load()
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081


def all_gather_object(object_list, obj, group=None):
    """

    Gather picklable objects from all participators and all get the result. Similiar to all_gather(), but python object can be passed in.

    Args:
        object_list (list): A list of output object. The datatype of every element in the list is same as the input obj.
        obj (Any): The picklable object to send.
        group (Group): The group instance return by new_group or None for global default group.

    Returns:
        None.

    Warning:
        This API only supports the dygraph mode.

    Examples:
        .. code-block:: python

            # required: distributed
            import paddle
            import paddle.distributed as dist

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            dist.init_parallel_env()
            object_list = []
            if paddle.distributed.ParallelEnv().local_rank == 0:
                obj = {"foo": [1, 2, 3]}
                paddle.distributed.all_gather_object(object_list, obj)
            else:
                obj = {"bar": [4, 5, 6]}
                paddle.distributed.all_gather_object(object_list, obj)
    """
    assert in_dygraph_mode(
    ), "all_gather_object doesn't support static graph mode."

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
    tensor, len_of_tensor = _convert_object_to_tensor(obj)

    # gather len_of_tensor from all ranks
    list_len_of_tensor = []
    all_gather(list_len_of_tensor, len_of_tensor, group)
    # get the max length from list
    max_len_of_tensor = int(max(list_len_of_tensor).item())
    # resize the input tensor to max length avoid hang in all gather
    # Note(liyurui): Maybe we should support various length all_gather?
    # Now this operation is efficient for we don't support resize in python.
    numpy_data = tensor.numpy()
    numpy_data = np.resize(numpy_data, [max_len_of_tensor])
    input_tensor = paddle.to_tensor(numpy_data)
1095 1096

    tensor_list = []
1097 1098 1099 1100
    all_gather(tensor_list, input_tensor, group)
    for i, tensor in enumerate(tensor_list):
        object_list.append(
            _convert_tensor_to_object(tensor, list_len_of_tensor[i]))
1101 1102


K
kuizhiqing 已提交
1103
def scatter(tensor, tensor_list=None, src=0, group=None, use_calc_stream=True):
1104 1105
    """

1106 1107 1108 1109 1110 1111 1112
    Scatter a tensor to all participators. As shown below, 4 GPUs each start 4 processes and the source of the scatter
    is GPU0. Through scatter operator, the data in GPU0 will be sent to all GPUs averagely.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/scatter.png
        :width: 800
        :alt: scatter
        :align: center
1113 1114 1115 1116

    Args:
        tensor (Tensor): The output Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
1117
        tensor_list (list|tuple): A list/tuple of Tensors to scatter. Every element in the list must be a Tensor whose data type
K
kuizhiqing 已提交
1118 1119
            should be float16, float32, float64, int32 or int64. Default value is None.
        src (int): The source rank id. Default value is 0.
K
kuizhiqing 已提交
1120
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
1121 1122
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
1123 1124 1125 1126 1127 1128 1129

    Returns:
        None.

    Examples:
        .. code-block:: python

1130
            # required: distributed
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data1 = np.array([7, 8, 9])
                np_data2 = np.array([10, 11, 12])
            else:
                np_data1 = np.array([1, 2, 3])
                np_data2 = np.array([4, 5, 6])
            data1 = paddle.to_tensor(np_data1)
            data2 = paddle.to_tensor(np_data2)
            if paddle.distributed.ParallelEnv().local_rank == 0:
                paddle.distributed.scatter(data1, src=1)
            else:
                paddle.distributed.scatter(data1, tensor_list=[data1, data2], src=1)
            out = data1.numpy()
1150
    """
K
kuizhiqing 已提交
1151 1152 1153 1154 1155 1156
    if group is not None and not group.is_member():
        return

    if not isinstance(src, int):
        raise ValueError("src should be int.")

L
lilong12 已提交
1157
    if in_dygraph_mode():
1158 1159 1160 1161 1162 1163 1164 1165 1166
        group = _get_default_group() if group is None else group
        gsrc = group.get_group_rank(src)
        rank = group.rank
        nranks = group.nranks
    else:
        ring_id = 0 if group is None else group.id
        gsrc = src if group is None else group.get_group_rank(src)
        rank = _get_global_group().rank if group is None else group.rank
        nranks = _get_global_group().nranks if group is None else group.nranks
K
kuizhiqing 已提交
1167
    assert gsrc >= 0, ("src rank out of group, need global rank")
K
kuizhiqing 已提交
1168 1169

    if rank != gsrc:
1170 1171 1172 1173
        tensor_list = []
        for _ in range(nranks):
            tensor_list.append(tensor)
    temp = paddle.concat(tensor_list, axis=0)
L
lilong12 已提交
1174
    if in_dygraph_mode():
1175 1176 1177 1178 1179 1180 1181
        task = group.process_group.scatter(temp, tensor, gsrc)
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task

L
lilong12 已提交
1182
    if _non_static_mode():
W
wanghuancoder 已提交
1183 1184 1185
        return _C_ops.c_scatter(temp, tensor, 'use_calc_stream',
                                use_calc_stream, 'ring_id', ring_id, 'nranks',
                                nranks, 'root', gsrc)
W
wanghuancoder 已提交
1186
    op_type = 'c_scatter'
1187 1188 1189 1190
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'scatter')
    helper = LayerHelper(op_type, **locals())
1191 1192 1193 1194 1195 1196 1197 1198 1199
    helper.append_op(type=op_type,
                     inputs={'X': [temp]},
                     outputs={'Out': [tensor]},
                     attrs={
                         'ring_id': ring_id,
                         'root': gsrc,
                         'use_calc_stream': use_calc_stream,
                         'nranks': nranks,
                     })
1200 1201


1202
def _c_identity(tensor, group=None):
L
lilong12 已提交
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
    """
    Return a copy of the tensor, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
1214 1215 1216 1217
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

J
Jiabin Yang 已提交
1218
    if _non_static_mode():
W
wanghuancoder 已提交
1219 1220
        return _C_ops.c_identity(tensor, 'use_calc_stream', True, 'ring_id',
                                 ring_id, 'use_model_parallel', True)
L
lilong12 已提交
1221 1222 1223
    op_type = 'c_identity'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
1224

L
lilong12 已提交
1225 1226 1227
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_identity')
1228

1229 1230 1231 1232 1233 1234 1235 1236
    helper.append_op(type=op_type,
                     inputs={'X': tensor},
                     outputs={'Out': out},
                     attrs={
                         'ring_id': ring_id,
                         'use_calc_stream': True,
                         'use_model_parallel': True,
                     })
L
lilong12 已提交
1237 1238 1239
    return out


1240
def _c_concat(tensor, group=None):
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
    """
    Return allgather of the tensor, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
    if group is not None and not group.is_member():
        return
1254 1255
    group = _get_default_group() if group is None else group
    ring_id = group.id
1256

1257
    global_rank = _get_global_env().rank
1258 1259
    rank = group.rank
    nranks = group.nranks
1260

J
Jiabin Yang 已提交
1261
    if _non_static_mode():
W
wanghuancoder 已提交
1262 1263 1264
        return _C_ops.c_concat(tensor, 'ring_id', ring_id, 'use_calc_stream',
                               True, 'rank', rank, 'nranks', nranks,
                               'use_model_parallel', True)
1265 1266 1267 1268 1269 1270 1271 1272 1273

    op_type = 'c_concat'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_concat')

1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
    helper.append_op(type=op_type,
                     inputs={'X': tensor},
                     outputs={'Out': out},
                     attrs={
                         'ring_id': ring_id,
                         'use_calc_stream': True,
                         'use_model_parallel': True,
                         'nranks': nranks,
                         'rank': rank
                     })
1284 1285 1286
    return out


1287
def _c_split(tensor, group=None):
L
lilong12 已提交
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
    """
    Split tensor evenly among all members, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        rank (int): The rank of the current process.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
1300 1301 1302 1303
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

1304 1305 1306 1307
    global_rank = _get_global_env().rank
    rank = global_rank if group is None else group.get_group_rank(global_rank)
    nranks = _get_global_env().world_size if group is None else group.nranks

J
Jiabin Yang 已提交
1308
    if _non_static_mode():
W
wanghuancoder 已提交
1309 1310 1311
        return _C_ops.c_split(tensor, 'use_calc_stream', True, 'ring_id',
                              ring_id, 'rank', rank, 'nranks', nranks,
                              'use_model_parallel', True)
1312

L
lilong12 已提交
1313 1314 1315
    op_type = 'c_split'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
1316

L
lilong12 已提交
1317 1318 1319
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_split')
1320

1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
    helper.append_op(type=op_type,
                     inputs={'X': tensor},
                     outputs={'Out': out},
                     attrs={
                         'ring_id': ring_id,
                         'use_calc_stream': True,
                         'rank': rank,
                         'nranks': nranks,
                         'use_model_parallel': True,
                     })
L
lilong12 已提交
1331 1332 1333
    return out


1334 1335 1336 1337 1338
def _mp_allreduce(tensor,
                  op=ReduceOp.SUM,
                  group=None,
                  use_calc_stream=True,
                  use_model_parallel=True):
1339
    """[it is same as allreduce above, but it supports model parallel. And it support inplace startegy]
1340 1341 1342 1343 1344
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

1345 1346 1347
    if in_dygraph_mode():
        assert op == ReduceOp.SUM, "Unknown parameter: {}.".format(op)

1348
        from paddle.autograd import PyLayer
1349

1350
        class mp_allreduce_eager(PyLayer):
1351

1352 1353 1354 1355
            @staticmethod
            def forward(ctx, tensor, use_calc_stream, ring_id,
                        use_model_parallel):
                ctx.ring_id = ring_id
1356 1357 1358 1359
                return _C_ops.c_allreduce_sum_(tensor, 'use_calc_stream',
                                               use_calc_stream, 'ring_id',
                                               ring_id, "use_model_parallel",
                                               use_model_parallel)
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370

            @staticmethod
            def backward(ctx, dy):
                return _C_ops.c_identity(dy, 'use_calc_stream', True, 'ring_id',
                                         ctx.ring_id, 'use_model_parallel',
                                         True)

        return mp_allreduce_eager.apply(tensor, use_calc_stream, ring_id,
                                        use_model_parallel)

    elif _in_legacy_dygraph():
1371
        if op == ReduceOp.SUM:
1372 1373 1374 1375
            return _C_ops.c_allreduce_sum_(tensor, 'use_calc_stream',
                                           use_calc_stream, 'ring_id', ring_id,
                                           "use_model_parallel",
                                           use_model_parallel)
1376 1377
        else:
            raise ValueError("Unknown parameter: {}.".format(op))
1378 1379 1380 1381 1382 1383 1384 1385 1386

    op_type = 'c_allreduce_sum'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        op_type)

1387 1388 1389 1390 1391 1392 1393 1394
    helper.append_op(type=op_type,
                     inputs={'X': tensor},
                     outputs={'Out': out},
                     attrs={
                         'ring_id': ring_id,
                         'use_calc_stream': use_calc_stream,
                         'use_model_parallel': use_model_parallel,
                     })
1395
    return out
1396 1397


1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
def _c_lookup_table(table, index, start_index=0, name=None):
    """
    Lookup table according to index.

    Args:
        table (Tensor): The input Tensor. Its data type
            should be float16, float32, float64.
        index (Tensor): The index to lookup table.
        start_index (int): The initial index for table range.
        name (string): The name of the api

    Returns:
        Tensor.
    """
J
Jiabin Yang 已提交
1412
    if _non_static_mode():
W
wanghuancoder 已提交
1413
        return _C_ops.c_embedding(table, index, "start_index", start_index)
1414

1415 1416 1417 1418 1419
    op_type = 'c_embedding'
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name='table')
    check_variable_and_dtype(index, 'input', ['int32', 'int64'], op_type)
    tmp = helper.create_variable_for_type_inference(dtype)
1420 1421 1422 1423 1424 1425 1426
    helper.append_op(type='c_embedding',
                     inputs={
                         'Ids': index,
                         'W': table
                     },
                     outputs={'Out': tmp},
                     attrs={"start_index": start_index})
1427 1428
    return tmp

1429

B
Baibaifan 已提交
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
class _Linear(layers.Layer):
    """
    Linear
    """

    def __init__(self,
                 in_features,
                 out_features,
                 weight_attr=None,
                 bias_attr=None,
                 name=None):
        super(_Linear, self).__init__()
        self._dtype = self._helper.get_default_dtype()
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
1445 1446 1447 1448 1449 1450 1451 1452
        self.weight = self.create_parameter(shape=[in_features, out_features],
                                            attr=self._weight_attr,
                                            dtype=self._dtype,
                                            is_bias=False)
        self.bias = self.create_parameter(shape=[out_features],
                                          attr=self._bias_attr,
                                          dtype=self._dtype,
                                          is_bias=True)
B
Baibaifan 已提交
1453 1454 1455
        self.name = name

    def forward(self, input):
1456 1457 1458 1459
        out = _linear(x=input,
                      weight=self.weight,
                      bias=self.bias,
                      name=self.name)
B
Baibaifan 已提交
1460 1461 1462 1463 1464 1465 1466 1467
        return out

    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'in_features={}, out_features={}, dtype={}{}'.format(
            self.weight.shape[0], self.weight.shape[1], self._dtype, name_str)


1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
def _c_softmax_with_cross_entropy(logits,
                                  label,
                                  group=None,
                                  return_softmax=False):
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id
    global_rank = _get_global_env().rank
    rank = global_rank if group is None else group.get_group_rank(global_rank)
    nranks = _get_global_env().world_size if group is None else group.nranks

    input_dims = len(list(logits.shape))
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
            'Expected nput_dims - 1 = label_dims or input_dims == label_dims\
             (got nput_dims{}, label_dims{})'.format(input_dims, label_dims))
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=-1)

J
Jiabin Yang 已提交
1488
    if _non_static_mode():
W
wanghuancoder 已提交
1489
        softmax, loss = _C_ops.c_softmax_with_cross_entropy(
1490 1491 1492 1493 1494 1495
            logits, label, 'ring_id', ring_id, 'rank', rank, 'nranks', nranks)
        if not return_softmax:
            return loss
        else:
            return loss, softmax

W
WangXi 已提交
1496 1497 1498 1499 1500 1501 1502 1503
    attrs = {
        'ring_id': ring_id,
        'rank': rank,
        'nranks': nranks,
    }
    helper = LayerHelper('c_softmax_with_cross_entropy', **locals())
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
    helper.append_op(type='c_softmax_with_cross_entropy',
                     inputs={
                         'Logits': logits,
                         'Label': label
                     },
                     outputs={
                         'Softmax': softmax,
                         'Loss': loss
                     },
                     attrs=attrs)
W
WangXi 已提交
1514 1515 1516 1517 1518 1519

    if return_softmax:
        return loss, softmax

    return loss

1520

B
Baibaifan 已提交
1521 1522 1523 1524
def _linear(x, weight, bias=None, name=None):
    """
    Fuction Linear
    """
J
Jiabin Yang 已提交
1525
    if _non_static_mode():
B
Baibaifan 已提交
1526
        pre_bias = _varbase_creator(dtype=x.dtype)
W
wanghuancoder 已提交
1527 1528
        _C_ops.matmul(x, weight, pre_bias, 'transpose_X', False, 'transpose_Y',
                      False, "alpha", 1)
1529 1530 1531
        return dygraph_utils._append_bias_in_dygraph(pre_bias,
                                                     bias,
                                                     axis=len(x.shape) - 1)
B
Baibaifan 已提交
1532 1533 1534
    else:
        helper = LayerHelper('linear', **locals())
        dtype = x.dtype
B
Baibaifan 已提交
1535 1536
        assert len(
            x.shape) < 4, "X latitude is not supported greater than 3 now."
B
Baibaifan 已提交
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548

        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'linear')
        check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'], 'linear')

        inputs = {'X': [x], 'Y': [weight]}
        attrs = {
            'transpose_X': False,
            'transpose_Y': False,
            'alpha': 1,
        }
        tmp = helper.create_variable_for_type_inference(dtype)
1549 1550 1551 1552
        helper.append_op(type='matmul_v2',
                         inputs=inputs,
                         outputs={'Out': tmp},
                         attrs=attrs)
B
Baibaifan 已提交
1553 1554
        if bias is not None:
            res = helper.create_variable_for_type_inference(dtype)
1555 1556 1557 1558 1559 1560 1561
            helper.append_op(type='elementwise_add',
                             inputs={
                                 'X': [tmp],
                                 'Y': [bias]
                             },
                             outputs={'Out': [res]},
                             attrs={'axis': len(x.shape) - 1})
B
Baibaifan 已提交
1562 1563 1564 1565 1566
        else:
            res = tmp
        return res


1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
def _set_var_distributed(var):
    if var is None:
        return

    var.is_distributed = True

    # NOTE: use current_block and find_var_recursive to support while_loop
    startup_block = paddle.static.default_startup_program().current_block()
    main_block = paddle.static.default_main_program().current_block()
    startup_block._find_var_recursive(var.name).is_distributed = True
    main_block._find_var_recursive(var.name).is_distributed = True


L
lilong12 已提交
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
def _parallel_linear(x,
                     num_rows,
                     num_cols,
                     axis,
                     param_attr,
                     bias_attr,
                     gather_out,
                     inner_rank,
                     nranks,
                     split_tensor,
                     name,
1591
                     group=None):
1592 1593
    """
    Parallel Linear
1594 1595 1596

    axis the dimension of the parameter of linear layer. 
    axis = 0: the row dimension
1597
    axis = 1: the col dimension
1598
    
1599
    """
1600 1601 1602 1603
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

L
lilong12 已提交
1604 1605
    if axis == 0:
        if split_tensor:
1606
            x = _c_split(x, group=group)
1607
    else:
L
lilong12 已提交
1608 1609
        x = _c_identity(x, group=group)

1610 1611 1612 1613 1614
    linear = paddle.nn.Linear(num_rows,
                              num_cols,
                              weight_attr=param_attr,
                              bias_attr=bias_attr,
                              name=name)
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626

    # NOTE: npu linear function use matmul_v2 but linear use matmul
    linear_function = _linear if core.is_compiled_with_npu()\
        else paddle.nn.functional.linear
    linear_out = linear_function(
        x,
        linear.weight,
        # NOTE(wangxi): row split, bias need add after allreduce
        None if axis == 0 else linear.bias,
        linear.name)

    _set_var_distributed(linear.weight)
1627 1628 1629 1630
    # set is_distributed for splited bias
    # if a linear layer is splited by row, each rank would hold a complete bias and they should be the same in each rank.
    # if a linear layer is splited by col, the bias would also be split into each rank as its weight
    if axis == 1 and linear._bias_attr != False:
1631
        _set_var_distributed(linear.bias)
L
lilong12 已提交
1632 1633 1634 1635 1636

    if not gather_out: return linear_out

    out_shape = list(linear_out.shape)
    out_shape[0] *= 1 if axis == 0 else nranks
1637
    main_block = paddle.static.default_main_program().current_block()
L
lilong12 已提交
1638 1639 1640 1641 1642 1643 1644 1645 1646
    out = main_block.create_var(
        shape=out_shape,
        dtype=linear_out.dtype,
        type=linear_out.type,
        lod_level=linear_out.lod_level,
        persistable=False,
        is_data=False,
        need_check_feed=linear_out.desc.need_check_feed())
    if axis == 0:
1647 1648 1649 1650 1651 1652 1653 1654
        main_block.append_op(type='c_allreduce_sum',
                             inputs={'X': linear_out},
                             outputs={'Out': out},
                             attrs={
                                 'ring_id': ring_id,
                                 'use_calc_stream': True,
                                 'use_model_parallel': True
                             })
1655 1656
        if linear.bias is not None:
            out = out + linear.bias
L
lilong12 已提交
1657
    else:
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
        main_block.append_op(type='c_concat',
                             inputs={'X': linear_out},
                             outputs={'Out': out},
                             attrs={
                                 'rank': inner_rank,
                                 'ring_id': ring_id,
                                 'nranks': nranks,
                                 'use_calc_stream': True,
                                 'use_model_parallel': True
                             })
L
lilong12 已提交
1668
    return out
1669 1670


L
lilong12 已提交
1671 1672 1673 1674 1675 1676 1677
def _parallel_embedding(x,
                        per_part_embeddings,
                        origin_size,
                        param_attr,
                        inner_rank,
                        num_partitions,
                        name,
1678
                        group=None):
1679 1680 1681
    """
    Parallel Embedding
    """
1682 1683 1684 1685
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

1686 1687 1688 1689 1690 1691 1692 1693 1694
    helper = LayerHelper("_parallel_embedding", **locals())

    per_part_size = per_part_embeddings
    rank = inner_rank

    vocab_start_index = rank * per_part_size
    dtype = helper.get_default_dtype()
    size = [per_part_size, origin_size[1]]

1695 1696 1697 1698
    weight = helper.create_parameter(attr=param_attr,
                                     shape=size,
                                     dtype=dtype,
                                     is_bias=False)
1699 1700

    if num_partitions == 1:
1701 1702 1703 1704 1705
        return paddle.nn.functional.embedding(x,
                                              weight=weight,
                                              padding_idx=None,
                                              sparse=False,
                                              name=name)
1706

1707 1708
    startup_block = paddle.static.default_startup_program().global_block()
    main_block = paddle.static.default_main_program().global_block()
1709 1710 1711 1712 1713
    startup_block.vars[weight.name].is_distributed = True
    main_block.vars[weight.name].is_distributed = True

    output_parallel = paddle.distributed.collective._c_lookup_table(
        weight, x, start_index=vocab_start_index, name=name)
1714 1715 1716 1717
    out = paddle.distributed.collective._mp_allreduce(output_parallel,
                                                      group=group,
                                                      use_calc_stream=True,
                                                      use_model_parallel=True)
L
lilong12 已提交
1718
    return out
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741


def split(x,
          size,
          operation,
          axis=0,
          num_partitions=1,
          gather_out=True,
          weight_attr=None,
          bias_attr=None,
          name=None):
    """

    Split the weight of the specified operation into multiple devices
    and do the computation in parallel.

    Now the following three cases are supported.

    Case 1: Parallel Embedding
        The weight of the embedding operation is a NxM matrix with N rows and M columns.
        With parallel embedding, the weight is split into num_partitions partitions, each
        of which is a matrix with (N/num_partitions + 1) rows and M column where the last
        row as the padding idx.
K
kuizhiqing 已提交
1742

1743 1744 1745 1746 1747 1748 1749 1750 1751
        Suppose we split the NxM weight into two partitons on device_0 and device_1
        respectively. Then, one each device, the final weight has (N/2 + 1) rows with the
        index range from 0 to N/2. On device_0, all values in the input within [0, N/2 -1]
        keep unchanged and all other values are changed to N/2 which is the padding index and
        are mapped to all zeros after embedding. In the same way, on device_1, the value V in the
        input within [N/2, N-1] will be changed to (V - N/2), and all other values are changed
        to N/2 and are mapped to all zeros after embedding. Finally, the results on the two
        devices are sum-reduced.

1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
        The Embedding put on single card is as shown below:

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_embedding_single.png
            :width: 800
            :height: 350
            :alt: single_embedding
            :align: center

        Parallel Embedding is shown as below:

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_embedding_split.png
            :width: 800
            :alt: split_embedding
            :align: center

1767 1768 1769 1770 1771
    Case 2: Row Parallel Linear
        The weight of the linear operation is a NxM matrix with N rows and M columns.
        With row parallel linear, the weight is split into num_partitions partitions, each
        of which is a matrix with N/num_partitions rows and M column.

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
        The linear layer put on single card is shown as below, the input variable is represented by X,
        the weight matrix is represented by W and the output vaiable is O. The linear layer on single card is 
        simple matrix multiplication operation, O = X * W.

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_single.png
            :width: 800
            :alt: single_linear
            :align: center

        Row Parallel Linear is shown as below. As the name suggests, Row Parallel Linear splits the weight matrix W into
        [[W_row1], [W_row2]] along the row. And accordingly the input is splitted along the column into [X_col1, X_col2] and multiply their
        respective weight matrices. Finally apply AllReduce on the output from each card to get the final output.

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_row.png
            :width: 800
            :alt: split_row
            :align: center

1790 1791 1792 1793 1794
    Case 3: Column Parallel Linear
        The weight of the linear operation is a NxM matrix with N rows and M columns.
        With column parallel linear, the weight is split into num_paratitions partitions, each
        of which is a matrix with N rows and M/num_partitions column.

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
        The linear layer put on single card has been illustrated on case 2 and Column Parallel Linear
        is shown as below. The Column Parallel Linear splits the weight matrix W into [W_col1, W_col2] along the column and 
        these splitted matrices respectively multiply the input. Finally apply AllGather on the output from each card to get the final output. 

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_col.png
            :width: 800
            :alt: split_col
            :align: center
    
    As observed, the column parallel linear and row parallel linear can be combined to skip one ALLGATHER communication
    operator. Furthermore the Attention and MLP can be combined to imporve the performance as shown below.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_col_row.png
            :width: 800
            :alt: split_col_row
            :align: center

1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
    Args:
        x (Tensor): Input tensor. It's data type should be float16, float32, float64, int32 or int64.
        size (list|tuple): A list or tuple with two elements indicating the shape of the weight.
        operation (str): The name of the operation. The supported operations are 'linear' and 'embedding'.
        axis (int, Optional): Indicate along which axis to split the weight. Default: 0.
        num_partitions (int, Optional): How many parts the weight is partitioned. Default: 1.
        gather_out (bool, Optional): Whether to gather the output after computation. By default, the output
            on each partitions will be gathered after computation. Default: True.
        weight_attr (ParamAttr, Optional): The parameter attribute for the learnable
            weights(Parameter) of the specified operation. Default: None.
        bias_attr (ParamAttr, Optional): The parameter attribute for the bias
            of the specified operation. Default: None.
        name (str, Optional): The default value is None. Normally there is no need for user to set this
            property. Default: None. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor.

    Examples:
        .. code-block:: python
1832

1833
            # required: distributed
1834
            import paddle
1835
            import paddle.distributed.fleet as fleet
1836

1837
            paddle.enable_static()
1838
            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
1839
            fleet.init(is_collective=True)
1840
            data = paddle.randint(0, 8, shape=[10,4])
1841
            emb_out = paddle.distributed.split(
1842 1843 1844 1845
                data,
                (8, 8),
                operation="embedding",
                num_partitions=2)
1846

1847
    """
1848 1849 1850 1851
    assert isinstance(
        size,
        (list, tuple)), ("The type of size for "
                         "paddle.distributed.split must be list or tuple.")
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
    assert len(size) == 2, ("Number of elements in size of "
                            "paddle.distributed.split must be two.")
    assert isinstance(operation, str), ("The type of operation for "
                                        "paddle.distributed.split must be str.")
    supported_operations = [
        'linear',
        'embedding',
    ]
    assert operation in supported_operations, (
        "The operation for "
        "paddle.distributed.split must be one of {}.".format(
            supported_operations))
J
Jiabin Yang 已提交
1864
    if _non_static_mode():
L
lilong12 已提交
1865 1866 1867 1868
        raise ValueError(
            "paddle.distributed.split cannot be used in dynamic "
            "graph mode, plese use ParallelEmbedding, ParallelRowLinear, "
            "ParallelColumnLinear instead.")
1869
    else:
1870
        from .fleet import fleet
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
        assert fleet._role_maker, ("To use paddle.distributed.split, "
                                   "you must call fleet.init() firstly.")
        rank = fleet.worker_index()
        nranks = fleet.worker_num()

    # rank within a model parallel group
    inner_rank = rank % num_partitions

    if operation == "embedding":
        assert axis == 0, ("We only support to split the weight of embedding "
                           "along the first axis now.")
1882 1883 1884
        assert size[0] % num_partitions == 0, \
            "The length of the vocabulary must be divisible by num_partitions " \
            "but received vocabulary={} num_partitions={}".format(size[0], num_partitions)
1885

1886
        per_part_size = size[0] // num_partitions
1887 1888 1889 1890 1891 1892 1893 1894
        emb_out = _parallel_embedding(x,
                                      per_part_size,
                                      size,
                                      weight_attr,
                                      inner_rank,
                                      num_partitions,
                                      name,
                                      group=None)
B
Baibaifan 已提交
1895
        return emb_out
1896
    else:
L
lilong12 已提交
1897
        should_split = False
1898 1899 1900
        if axis == 0:
            assert size[0] % num_partitions == 0, (
                "Number of rows of the weight for linear ({}) must be"
1901 1902
                " divisible by num_partitions ({})".format(
                    size[0], num_partitions))
1903 1904
            per_part_size = size[0] // num_partitions
            linear_size = (per_part_size, size[1])
L
lilong12 已提交
1905
            if x.shape[-1] == size[0]: should_split = True
1906 1907 1908 1909

        elif axis == 1:
            assert size[1] % num_partitions == 0, (
                "Number of column of the weight for linear ({}) must be"
1910 1911
                " divisible by num_partitions ({})".format(
                    size[1], num_partitions))
1912 1913 1914 1915 1916 1917
            per_part_size = size[1] // num_partitions
            linear_size = (size[0], per_part_size)
        else:
            raise ValueError("The value of axis must be 0 or 1, but the value "
                             "given is {}.".format(axis))

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
        linear_out = _parallel_linear(x,
                                      linear_size[0],
                                      linear_size[1],
                                      axis,
                                      weight_attr,
                                      bias_attr,
                                      gather_out,
                                      inner_rank,
                                      num_partitions,
                                      should_split,
                                      name=name,
                                      group=None)
1930
        return linear_out
L
lilong12 已提交
1931 1932


L
lilong12 已提交
1933 1934
def alltoall(in_tensor_list, out_tensor_list, group=None, use_calc_stream=True):
    """
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
    Scatter tensors in in_tensor_list to all participators averagely and gather the result tensors in out_tensor_list.
    As shown below, the in_tensor_list in GPU0 includes 0_0 and 0_1, and GPU1 includes 1_0 and 1_1.
    Through alltoall operator, the 0_0 in GPU0 will be sent to GPU0 and 0_1 to GPU1, 1_0 in GPU1 sent to GPU0 and 1_1 to GPU1.
    Finally the out_tensor_list in GPU0 includes 0_0 and 1_0, and GPU1 includes 0_1 and 1_1.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/alltoall.png
        :width: 800
        :alt: alltoall
        :align: center

L
lilong12 已提交
1945 1946 1947
    Args:
        in_tensor_list (list): A list of input Tensors. Every element in the list must be a Tensor whose data type
            should be float16, float32, float64, int32 or int64.
1948
        out_tensor_list (list): A list of output Tensors. The data type of its elements should be the same as the
L
lilong12 已提交
1949 1950
            data type of the input Tensors.
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
1951
        use_calc_stream (bool, optional): Whether to use calculation stream (True) or communication stream. Default: True.
1952
    
L
lilong12 已提交
1953 1954
    Returns:
        None.
1955
    
L
lilong12 已提交
1956 1957
    Examples:
        .. code-block:: python
1958

L
lilong12 已提交
1959 1960 1961 1962
            # required: distributed
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env
1963
            
L
lilong12 已提交
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
            init_parallel_env()
            out_tensor_list = []
            if paddle.distributed.ParallelEnv().rank == 0:
                np_data1 = np.array([[1, 2, 3], [4, 5, 6]])
                np_data2 = np.array([[7, 8, 9], [10, 11, 12]])
            else:
                np_data1 = np.array([[13, 14, 15], [16, 17, 18]])
                np_data2 = np.array([[19, 20, 21], [22, 23, 24]])
            data1 = paddle.to_tensor(np_data1)
            data2 = paddle.to_tensor(np_data2)
李季 已提交
1974
            paddle.distributed.alltoall([data1, data2], out_tensor_list)
L
lilong12 已提交
1975 1976 1977 1978 1979 1980
            # out for rank 0: [[[1, 2, 3], [4, 5, 6]], [[13, 14, 15], [16, 17, 18]]]
            # out for rank 1: [[[7, 8, 9], [10, 11, 12]], [[19, 20, 21], [22, 23, 24]]]
    """
    if group is not None and not group.is_member():
        return

L
lilong12 已提交
1981
    if in_dygraph_mode():
1982 1983 1984 1985
        group = _get_default_group() if group is None else group
    else:
        ring_id = 0 if group is None else group.id

L
lilong12 已提交
1986
    temp = paddle.concat(in_tensor_list, axis=0)
李季 已提交
1987
    nranks = len(in_tensor_list)
L
lilong12 已提交
1988
    if in_dygraph_mode():
1989 1990 1991 1992 1993 1994
        if len(out_tensor_list) == 0:
            tensor_shape = list(in_tensor_list[0].shape)
            tensor_shape[0] *= nranks
            out = paddle.empty(tensor_shape, in_tensor_list[0].dtype)
        else:
            out = paddle.concat(out_tensor_list, axis=0)
1995 1996 1997 1998 1999 2000
        task = group.process_group.alltoall(temp, out)
        task.wait()
        out_tensor_list.clear()
        out_tensor_list.extend(paddle.split(out, nranks, 0))
        return

J
Jiabin Yang 已提交
2001
    if _non_static_mode():
李季 已提交
2002 2003
        out = _C_ops.alltoall(temp, 'use_calc_stream', use_calc_stream,
                              'ring_id', ring_id)
L
lilong12 已提交
2004
    else:
W
wanghuancoder 已提交
2005 2006 2007 2008 2009
        op_type = 'alltoall'
        helper = LayerHelper(op_type, **locals())
        out = helper.create_variable_for_type_inference(
            dtype=in_tensor_list[0].dtype)

L
lilong12 已提交
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
        if not isinstance(in_tensor_list, list):
            raise ValueError("The type of 'in_tensor_list' for all_to_all "
                             "should be list.")
        for elem in in_tensor_list:
            check_variable_and_dtype(
                elem, 'in_tensor_list',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'all_to_all')
        if not isinstance(out_tensor_list, list):
            raise ValueError("The type of 'out_tensor_list' for all_to_all "
                             "should be list.")
        if len(out_tensor_list) != 0:
            raise ValueError("The 'out_tensor_list' for all_to_all "
                             "must be an empty list.")
2024 2025 2026 2027 2028 2029 2030
        helper.append_op(type=op_type,
                         inputs={'X': [temp]},
                         outputs={'Out': [out]},
                         attrs={
                             'ring_id': ring_id,
                             'use_calc_stream': use_calc_stream,
                         })
L
lilong12 已提交
2031 2032 2033
    out_tensor_list.extend(paddle.split(out, nranks, 0))


2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
def alltoall_single(in_tensor,
                    out_tensor,
                    in_split_sizes=None,
                    out_split_sizes=None,
                    group=None,
                    use_calc_stream=True):
    """
    Scatter a single input tensor to all participators and gather the received tensors in out_tensor.

    .. note::
        ``alltoall_single`` is only supported in eager mode.

    Args:
        in_tensor (Tensor): Input tensor. The data type should be float16, float32, float64, int32 or int64.
        out_tensor (Tensor): Output Tensor. The data type should be the same as the data type of the input Tensor.
        in_split_sizes (list[int], optional): Split sizes of ``in_tensor`` for dim[0]. If not given, dim[0] of ``in_tensor`` 
            must be divisible by group size and ``in_tensor`` will be scattered averagely to all participators. Default: None.
        out_split_sizes (list[int], optional): Split sizes of ``out_tensor`` for dim[0]. If not given, dim[0] of ``out_tensor`` 
            must be divisible by group size and ``out_tensor`` will be gathered averagely from all participators. Default: None.
        group (Group, optional): The group instance return by ``new_group`` or None for global default group. Default: None.
        use_calc_stream (bool, optional): Whether to use calculation stream (True) or communication stream. Default: True.
    
    Returns:
        None, if ``use_calc_stream`` is set to ``True``; ``Task`` of ``group``, if ``use_calc_stream`` is set to ``False``.
    
    Examples:
        .. code-block:: python

            # required: distributed
            import paddle
            import paddle.distributed as dist

            dist.init_parallel_env()
            rank = dist.get_rank()
            size = dist.get_world_size()

            # case 1
            input = paddle.arange(2, dtype='int64') + rank * 2
            # input for rank 0: [0, 1]
            # input for rank 1: [2, 3]
            
            output = paddle.empty([2], dtype='int64')
            dist.alltoall_single(input, output)
            # output for rank 0: [0, 2]
            # output for rank 1: [1, 3]

            # case 2
            in_split_sizes = [i + 1 for i in range(size)]
            # in_split_sizes for rank 0: [1, 2] and for rank 1: [1, 2]
            out_split_sizes = [rank + 1 for i in range(size)]
            # out_split_sizes for rank 0: [1, 1] and for rank 1: [2, 2]

            input = paddle.ones([sum(in_split_sizes), size], dtype='float32') * rank
            # input for rank 0: [[0., 0.], [0., 0.], [0., 0.]]
            # input for rank 1: [[1., 1.], [1., 1.], [1., 1.]]
            output = paddle.empty([(rank + 1) * size, size], dtype='float32')

            group = dist.new_group([0, 1])
            task = dist.alltoall_single(input,
                                        output,
                                        in_split_sizes,
                                        out_split_sizes,
                                        use_calc_stream=False,
                                        group=group)
            task.wait()
            # output for rank 0: [[0., 0.], [1., 1.]]
            # output for rank 1: [[0., 0.], [0., 0.], [1., 1.], [1., 1.]]

    """
    if group is not None and not group.is_member():
        return

    assert in_dygraph_mode(), "Only suppport alltoall_single in eager mode."
    # _check_single_tensor

    group = _get_default_group() if group is None else group
    in_split_sizes = [] if in_split_sizes is None else in_split_sizes
    out_split_sizes = [] if out_split_sizes is None else out_split_sizes

    task = group.process_group.alltoall_single(in_tensor, out_tensor,
                                               in_split_sizes, out_split_sizes)
    if use_calc_stream:
        task.wait()
        return
    else:
        return task


S
ShenLiang 已提交
2122 2123 2124 2125
def _get_group_rank(global_rank, group=None):
    return global_rank if group is None else group.get_group_rank(global_rank)


L
lilong12 已提交
2126 2127 2128 2129 2130 2131 2132 2133
def send(tensor, dst=0, group=None, use_calc_stream=True):
    """
    Send a tensor to the receiver.

    Args:
        tensor (Tensor): The Tensor to send. Its data type
            should be float16, float32, float64, int32 or int64.
        dst (int): The destination rank id.
L
lilong12 已提交
2134 2135
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
        use_calc_stream (bool, optional): Whether to use calculate stream or communication stream. Default: True.
2136
    
L
lilong12 已提交
2137 2138 2139 2140 2141
    Returns:
        None.

    Examples:
        .. code-block:: python
2142

L
lilong12 已提交
2143
            # required: distributed
L
lilong12 已提交
2144
            import paddle
L
lilong12 已提交
2145
            from paddle.distributed import init_parallel_env
2146

L
lilong12 已提交
2147 2148 2149 2150 2151 2152 2153 2154
            init_parallel_env()
            if paddle.distributed.ParallelEnv().rank == 0:
                data = paddle.to_tensor([7, 8, 9])
                paddle.distributed.send(data, dst=1)
            else:
                data = paddle.to_tensor([1,2,3])
                paddle.distributed.recv(data, src=0)
            out = data.numpy()
L
lilong12 已提交
2155 2156 2157
    """
    if group is not None and not group.is_member():
        return
S
ShenLiang 已提交
2158
    dst = _get_group_rank(dst, group)
L
lilong12 已提交
2159
    if in_dygraph_mode():
2160
        group = _get_default_group() if group is None else group
S
ShenLiang 已提交
2161
        task = group.process_group.send(tensor, dst)
2162 2163 2164 2165 2166 2167
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task

L
lilong12 已提交
2168 2169
    ring_id = 0 if group is None else group.id

J
Jiabin Yang 已提交
2170
    if _non_static_mode():
W
wanghuancoder 已提交
2171 2172
        return _C_ops.send_v2(tensor, 'use_calc_stream', use_calc_stream,
                              'ring_id', ring_id, 'peer', dst)
W
wanghuancoder 已提交
2173
    op_type = 'send_v2'
L
lilong12 已提交
2174 2175 2176 2177 2178
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'send')

    helper = LayerHelper(op_type, **locals())
2179 2180 2181 2182 2183 2184 2185
    helper.append_op(type=op_type,
                     inputs={'X': [tensor]},
                     attrs={
                         'ring_id': ring_id,
                         'peer': dst,
                         'use_calc_stream': use_calc_stream,
                     })
L
lilong12 已提交
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195


def recv(tensor, src=0, group=None, use_calc_stream=True):
    """
    Receive a tensor to the sender.

    Args:
        tensor (Tensor): The Tensor to receive. Its data type
            should be float16, float32, float64, int32 or int64.
        src (int): The source rank id.
L
lilong12 已提交
2196 2197
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
        use_calc_stream (bool, optional): Whether to use calculate stream or communication stream. Default: True.
2198
    
L
lilong12 已提交
2199 2200 2201 2202 2203
    Returns:
        None.

    Examples:
        .. code-block:: python
2204

L
lilong12 已提交
2205
            # required: distributed
L
lilong12 已提交
2206
            import paddle
L
lilong12 已提交
2207
            from paddle.distributed import init_parallel_env
2208

L
lilong12 已提交
2209 2210 2211 2212 2213 2214 2215 2216
            init_parallel_env()
            if paddle.distributed.ParallelEnv().rank == 0:
                data = paddle.to_tensor([7, 8, 9])
                paddle.distributed.send(data, dst=1)
            else:
                data = paddle.to_tensor([1,2,3])
                paddle.distributed.recv(data, src=0)
            out = data.numpy()
L
lilong12 已提交
2217 2218 2219
    """
    if group is not None and not group.is_member():
        return
2220

S
ShenLiang 已提交
2221
    src = _get_group_rank(src, group)
L
lilong12 已提交
2222
    if in_dygraph_mode():
2223
        group = _get_default_group() if group is None else group
S
ShenLiang 已提交
2224
        task = group.process_group.recv(tensor, src)
2225 2226 2227 2228 2229 2230
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task

L
lilong12 已提交
2231 2232
    ring_id = 0 if group is None else group.id

J
Jiabin Yang 已提交
2233
    if _non_static_mode():
W
wanghuancoder 已提交
2234 2235 2236
        return _C_ops.recv_v2(tensor, 'use_calc_stream', use_calc_stream,
                              'ring_id', ring_id, 'peer', src, 'dtype',
                              tensor.dtype, 'out_shape', tensor.shape)
W
wanghuancoder 已提交
2237
    op_type = 'recv_v2'
L
lilong12 已提交
2238 2239 2240 2241
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'recv')
    helper = LayerHelper(op_type, **locals())
2242 2243 2244 2245 2246 2247 2248 2249 2250
    helper.append_op(type=op_type,
                     outputs={'Out': [tensor]},
                     attrs={
                         'ring_id': ring_id,
                         'peer': src,
                         'out_shape': tensor.shape,
                         'dtype': tensor.dtype,
                         'use_calc_stream': use_calc_stream,
                     })
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637


def _check_single_tensor(tensor, tensor_name):
    if not isinstance(tensor, (core.eager.Tensor, paddle.Tensor)):
        raise RuntimeError("Invalid function argument. Expected parameter {}"
                           "to be of type paddle.Tensor, but it's {}".format(
                               tensor_name, type(tensor)))


def _check_tensor_list(tensor_list, tensor_name):
    if not isinstance(tensor_list, list) or \
        not all(isinstance(t, (core.eager.Tensor, paddle.Tensor)) for t in tensor_list):
        raise RuntimeError("Invalid function argument. Expected parameter {}"
                           "to be of type paddle.Tensor".format(tensor_name))


def isend(tensor, dst, group=None):
    """
    Sends a tensor asynchronously

    Args:
        tensor (Tensor): The Tensor to send. Its data type
            should be float16, float32, float64, int32 or int64.
        dst (int): The destination rank.
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
    
    Returns:
        A distributed task object.

    Warning:    
        This API only supports the dygraph mode.

    Examples:
        .. code-block:: python

            # required: distributed
            import paddle
            import paddle.distributed as dist

            dist.init_parallel_env()
            rank = dist.get_rank()
            world_size = dist.get_world_size()

            if rank == 0:
                data = paddle.to_tensor([7, 8, 9])
                task = paddle.distributed.isend(data, dst=1)
            else:
                data = paddle.to_tensor([1, 2, 3])
                task = paddle.distributed.irecv(data, src=0)

            task.wait()

            print(data)
            # paddle.tensor([7, 8, 9])     # Rank-0
            # paddle.tensor([7, 8, 9])     # Rank-1

    """
    _check_single_tensor(tensor, "tensor")
    if group is not None and not group.is_member():
        return

    if in_dygraph_mode():
        group = _get_default_group() if group is None else group
        group_dst_rank = group.get_group_rank(dst)
        assert group_dst_rank >= 0, ("dst rank out of group, need global rank")
        return group.process_group.send(tensor, group_dst_rank)
    else:
        raise RuntimeError("Don't support static graph mode currently.")


def irecv(tensor, src=None, group=None):
    """
    Receive a tensor to the sender.

    Args:
        tensor (Tensor): The Tensor to receive. Its data type
            should be float16, float32, float64, int32 or int64.
        src (int): The source rank id.
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.

    Returns:
         A distributed task object.

    Warning:    
        This API only supports the dygraph mode.

    Examples:
        .. code-block:: python

            # required: distributed
            import paddle
            import paddle.distributed as dist

            dist.init_parallel_env()
            rank = dist.get_rank()
            world_size = dist.get_world_size()

            if rank == 0:
                data = paddle.to_tensor([7, 8, 9])
                task = paddle.distributed.isend(data, dst=1)
            else:
                data = paddle.to_tensor([1, 2, 3])
                task = paddle.distributed.irecv(data, src=0)

            task.wait()

            print(data)
            # paddle.tensor([7, 8, 9])     # Rank-0
            # paddle.tensor([7, 8, 9])     # Rank-1
    """
    _check_single_tensor(tensor, "tensor")
    if group is not None and not group.is_member():
        return

    if in_dygraph_mode():
        group = _get_default_group() if group is None else group
        group_src_rank = group.get_group_rank(src)
        assert group_src_rank >= 0, ("src rank out of group, need global rank")
        return group.process_group.recv(tensor, group_src_rank)
    else:
        raise RuntimeError("Don't support static graph mode currently.")


class P2POp(object):
    """
    A class that makes point-to-point operations for "batch_isend_irecv".

    This class creates the type of P2P operation, communication buffer, peer rank,
    Group. Instances of this class will be passed to
    ``paddle.distributed.batch_isend_irecv`` for point-to-point communication.

    Args:
        op (callable): A function to send data to or receive data from a peer process.
            The type of ``op`` is either ``paddle.distributed.isend`` or ``paddle.distributed.irecv``.
        tensor (Tensor): Tensor to send or receive.
        peer (int): The destination or source rank.
        group (Group, optional): The group instance return by new_group or None for global 
            default group. Default: None.

    """

    def __init__(self, op, tensor, peer, group=None):
        if op not in [isend, irecv]:
            raise RuntimeError("Invalid ``op`` function. Expected ``op`` "
                               "to be of type ``paddle.distributed.isend`` or "
                               "``paddle.distributed.irecv``.")
        _check_single_tensor(tensor, "tensor")

        self.op = op
        self.tensor = tensor
        self.peer = peer
        self.group = _get_default_group() if group is None else group


@contextlib.contextmanager
def _with_batch_p2p_guard(backend):
    if backend == "nccl":
        core.ProcessGroupNCCL.group_start()
    try:
        yield
    finally:
        if backend == "nccl":
            core.ProcessGroupNCCL.group_end()


def _check_p2p_op_list(p2p_op_list):
    """
    Helper to check that the ``p2p_op_list`` is a list of P2POp instances and
    all ops use the same backend.
    """
    if not isinstance(p2p_op_list, list) or not all(
            isinstance(p2p_op, P2POp) for p2p_op in p2p_op_list):
        raise RuntimeError("Invalid ``p2p_op_list``. Each op is expected to "
                           "to be of type ``paddle.distributed.P2POp``.")

    backend = _group_map_backend[p2p_op_list[0].group]
    if not all(backend == _group_map_backend[p2p_op.group]
               for p2p_op in p2p_op_list):
        raise RuntimeError("All groups need to use the same backend.")


def batch_isend_irecv(p2p_op_list):
    """
    Send or Receive a batch of tensors asynchronously and return a list of requests.

    Process each of the point-to-point operations in ``p2p_op_list`` and return the 
    corresponding tasks. NCCL are currently supported.

    Args:
        p2p_op_list: A list of point-to-point operations(type of each operator is
            ``paddle.distributed.P2POp``). The order of the isend/irecv in the list
            matters and it needs to match with corresponding isend/irecv on the
            remote end.

    Returns:
        A list of distributed tasks returned by calling the corresponding
        op in the op_list. 

    Warning:    
        This API only supports the dygraph mode.

    Examples:
        .. code-block:: python

            # required: distributed

            import paddle
            import paddle.distributed as dist

            dist.init_parallel_env()
            rank = dist.get_rank()
            world_size = dist.get_world_size()

            send_t = paddle.arange(2) + rank
            # paddle.tensor([0, 1])  # Rank-0
            # paddle.tensor([1, 2])  # Rank-1

            recv_t = paddle.empty(shape=[2], dtype=send_t.dtype)

            send_op = dist.P2POp(dist.isend, send_t, (rank + 1) % world_size)
            recv_op = dist.P2POp(dist.irecv, recv_t, (rank - 1 + world_size) % world_size)

            tasks = dist.batch_isend_irecv([send_op, recv_op])

            for task in tasks:
                task.wait()
            
            print(recv_t)
            # paddle.tensor([1, 2])     # Rank-0
            # paddle.tensor([0, 1])     # Rank-1
    """
    _check_p2p_op_list(p2p_op_list)
    group = p2p_op_list[0].group
    if group is not None and not group.is_member():
        return

    if in_dygraph_mode():
        group = _get_default_group() if group is None else group
        backend = _group_map_backend[group]
        tasks = []
        with _with_batch_p2p_guard(backend):
            for p2p_op in p2p_op_list:
                op = p2p_op.op
                tensor = p2p_op.tensor
                peer = p2p_op.peer
                comm_group = p2p_op.group
                task = op(tensor, peer, comm_group)
                if task is not None:
                    tasks.append(task)
        return tasks
    else:
        raise RuntimeError("Don't support static graph mode currently.")


def reduce_scatter(tensor,
                   tensor_list,
                   op=ReduceOp.SUM,
                   group=None,
                   use_calc_stream=True):
    """
    Reduces, then scatters a list of tensors to all processes in a group

    Args:
        tensor (Tensor): Output tensor.
        tensor_list (list[Tensor]): List of tensors to reduce and scatter.
        op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.Min|ReduceOp.PROD): Optional. The operation used. Default: ReduceOp.SUM.
        group (Group, optional): The group instance return by new_group or None for global 
            default group. Default: None.
        use_calc_stream (bool, optional): Whether this op should be an async op.

    Returns:
        Async task handle, if use_calc_stream is set to False.
        None, if use_calc_stream or if not part of the group.
    
    Warning:    
        This API only supports the dygraph mode.


    Examples:
        .. code-block:: python

            # required: distributed
            import paddle
            import paddle.distributed as dist

            dist.init_parallel_env()
            rank = dist.get_rank()
            world_size = dist.get_world_size()

            if rank == 0:
                t1 = paddle.to_tensor([0, 1])
                t2 = paddle.to_tensor([2, 3])
            else:
                t1 = paddle.to_tensor([4, 5])
                t2 = paddle.to_tensor([6, 7])

            tensor_list = [t1, t2]

            output = paddle.empty(shape=[2], dtype=tensor_list[0].dtype)
            dist.reduce_scatter(output, tensor_list)

            print(output)
            # [4, 6]     # Rank-0
            # [8, 10]     # Rank-1

    """
    _check_single_tensor(tensor, "tensor")
    _check_tensor_list(tensor_list, "tensor_list")

    if group is not None and not group.is_member():
        return

    if in_dygraph_mode():
        op_type = _get_reduce_op(op, "reduce_scatter")
        group = _get_default_group() if group is None else group

        temp = paddle.concat(tensor_list, axis=0)
        task = group.process_group._reduce_scatter_base(tensor, temp, op_type)
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task
    else:
        raise RuntimeError("Don't support static graph mode currently.")


def _reduce_scatter_base(output,
                         input,
                         op=ReduceOp.SUM,
                         group=None,
                         use_calc_stream=True):
    """
    Reduces, then scatters a flattened tensor to all processes in a group.

    Args:
        output (Tensor): Output tensor.
        input (Tensor): Input tensor that is of size output tensor size times world size
        op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.Min|ReduceOp.PROD): Optional. The operation used. Default: ReduceOp.SUM.
        group (ProcessGroup, optional): The process group to work on. If None,
            the default process group will be used.
        use_calc_stream (bool, optional): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
    Returns:
        Async task handle, if use_calc_stream is set to False.
        None, if use_calc_stream or if not part of the group.

    Examples:
        .. code-block:: python

            # required: distributed

            import paddle
            import paddle.distributed as dist

            dist.init_parallel_env()
            rank = dist.get_rank()
            world_size = dist.get_world_size()

            input = paddle.arange(4) + rank
            # [0, 1, 2, 3]  # Rank-0
            # [1, 2, 3, 4]  # Rank-1

            output = paddle.empty(shape=[2], dtype=input.dtype)
            paddle.distributed.collective._reduce_scatter_base(output, input)
            print(output)
            # [1, 3]     # Rank-0
            # [5, 7]     # Rank-1

    """
    _check_single_tensor(output, "output")
    _check_single_tensor(input, "input")

    if group is not None and not group.is_member():
        return

    if in_dygraph_mode():
        op_type = _get_reduce_op(op, "_reduce_scatter_base")
        group = _get_default_group() if group is None else group
        task = group.process_group._reduce_scatter_base(output, input, op_type)
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task
    else:
        raise RuntimeError("Don't support static graph mode currently.")