collective.py 58.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import os
from ..fluid.layer_helper import LayerHelper
18 19 20 21
from ..fluid.framework import Variable
from ..fluid.framework import OpProtoHolder
from ..fluid.framework import in_dygraph_mode
from ..fluid.framework import convert_np_dtype_to_dtype_
J
Jiangxinz 已提交
22
from ..fluid.framework import _varbase_creator
23 24 25 26
from ..fluid.data_feeder import convert_dtype
from ..fluid.data_feeder import check_variable_and_dtype
from ..fluid.data_feeder import check_type
from ..fluid.data_feeder import check_dtype
27 28
from ..fluid.layers.tensor import fill_constant
from ..fluid.layers import utils
B
Baibaifan 已提交
29
from ..fluid.dygraph import layers
30 31 32 33
from ..fluid.dygraph.parallel import prepare_context
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
W
wanghuancoder 已提交
34
from paddle import _C_ops
J
Jiangxinz 已提交
35
import paddle.fluid.dygraph_utils as dygraph_utils
36

37
__all__ = []
38 39 40


class ReduceOp:
L
lilong12 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    """
    Specify the type of operation used for element-wise reductions.
    It should be one of the following values:

        ReduceOp.SUM

        ReduceOp.MAX

        ReduceOp.MIN

        ReduceOp.PROD

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle
            from paddle.distributed import ReduceOp
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.all_reduce(data, op=ReduceOp.SUM)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
    """
72 73 74 75 76 77
    SUM = 0
    MAX = 1
    MIN = 2
    PROD = 3


K
kuizhiqing 已提交
78 79 80 81
class Group():
    """
    The abstract representation of group.
    """
82

K
kuizhiqing 已提交
83
    def __init__(self, rank, rank_num, id=0, ranks=[]):
84 85
        self.rank = rank
        self.nranks = rank_num
K
kuizhiqing 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
        self.id = id
        self.ranks = ranks

    def is_member(self):
        if self.rank < 0:
            return False
        if self.nranks < 2:
            return False
        return True

    def get_group_rank(self, rank):
        if self.is_member() and rank in self.ranks:
            return self.ranks.index(rank)
        else:
            return -1

102 103 104 105 106 107 108
    def __repr__(self):
        debug_str = "rank: {}, nranks: {}, id: {}, ranks: ".format(
            self.rank, self.nranks, self.id)
        debug_str += ", ".join(map(str, self.ranks))
        debug_str += ". "
        return debug_str

K
kuizhiqing 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

_global_env = None


def _get_global_env():
    global _global_env
    if not _global_env:
        _global_env = paddle.distributed.ParallelEnv()
    return _global_env


# group map : the map of all group, 0 for GlobalGroup
# Dict[int, Group]
_group_map = {}


def _get_group_map():
    global _group_map
    if not _group_map:
        genv = _get_global_env()
129 130
        _group_map[0] = Group(
            genv.rank, genv.world_size, ranks=list(range(genv.world_size)))
K
kuizhiqing 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    return _group_map


def _get_global_group():
    return _get_group_map()[0]


def _new_ring_id():
    return len(_get_group_map()) + max(_get_global_env().nrings, 9)


def get_group(id=0):
    """

    Get group instance by group id.

    Args:
K
kuizhiqing 已提交
148
        id (int): the group id. Default value is 0.
K
kuizhiqing 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162

    Returns:
        Group: the group instance.

    Examples:
        .. code-block:: python

            ...
            gid = paddle.distributed.new_group([2,4,6])
            paddle.distributed.get_group(gid.id)

    """

    gm = _get_group_map()
J
Jiangxinz 已提交
163
    return gm[id] if id in gm else None
K
kuizhiqing 已提交
164 165


S
ShenLiang 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
def barrier(group=None):
    """

    Barrier among all participators in the group.

    Args:
        group (Group): The group instance return by new_group or None for global default group.

    Returns:
        None.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            paddle.distributed.barrier()
    """
    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id

    temp = fill_constant([1], dtype="int32", value="1")
    if in_dygraph_mode():
W
wanghuancoder 已提交
194
        return _C_ops.barrier(temp, temp, 'ring_id', ring_id)
W
wanghuancoder 已提交
195 196 197

    op_type = 'barrier'

S
ShenLiang 已提交
198 199 200 201 202 203 204 205 206 207
    if not isinstance(ring_id, int):
        raise ValueError("The type of 'group' for barrier must be int.")
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [temp]},
        outputs={'Out': [temp]},
        attrs={'ring_id': ring_id})


K
kuizhiqing 已提交
208 209 210
def new_group(ranks=None, backend=None):
    """

K
kuizhiqing 已提交
211
    Creates a new distributed communication group.
K
kuizhiqing 已提交
212 213

    Args:
K
kuizhiqing 已提交
214
        ranks (list): The global ranks of group members.
K
kuizhiqing 已提交
215 216 217
        backend (str): The backend used to create group, only nccl is supported now.

    Returns:
K
kuizhiqing 已提交
218
        Group: The group instance.
K
kuizhiqing 已提交
219 220 221 222 223 224 225

    Examples:
        .. code-block:: python

            import paddle

            paddle.distributed.init_parallel_env()
K
kuizhiqing 已提交
226 227 228
            tindata = paddle.randn(shape=[2, 3])
            gp = paddle.distributed.new_group([2,4,6])
            paddle.distributed.all_reduce(tindata, group=gp, use_calc_stream=False)
K
kuizhiqing 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

    """

    if not backend:
        backend = 'nccl'
    assert backend == 'nccl', ("backend other than nccl is not supported yet")

    genv = _get_global_env()
    global_rank = genv.rank

    ring_id = _new_ring_id()

    global _group_map
    if global_rank not in ranks:
        gp = Group(-1, -1, ring_id, ranks)
        _group_map[ring_id] = gp
    else:
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
        ranks = sorted(ranks)
        group_rank = ranks.index(global_rank)
        group_size = len(ranks)
        gp = Group(group_rank, group_size, ring_id, ranks)
        _group_map[ring_id] = gp

        if group_size >= 2:
            strategy = core.ParallelStrategy()
            strategy.nranks = group_size
            strategy.local_rank = group_rank
            strategy.trainer_endpoints = [
                genv.trainer_endpoints[i] for i in ranks
            ]
            strategy.current_endpoint = genv.current_endpoint
            strategy.nrings = 1

            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(genv.device_id)
                core.NCCLParallelContext(strategy,
                                         place).init_with_ring_id(ring_id)
266 267 268 269
            elif core.is_compiled_with_npu():
                place = core.NPUPlace(genv.device_id)
                core.HCCLParallelContext(strategy,
                                         place).init_with_ring_id(ring_id)
270 271 272 273
            elif core.is_compiled_with_mlu():
                place = core.MLUPlace(genv.device_id)
                core.CNCLParallelContext(strategy,
                                         place).init_with_ring_id(ring_id)
274 275 276 277 278 279 280
            else:
                assert False, ("no cuda device found")
        else:
            return gp

    # TODO(shenliang03): This is a temporary solution to solve the problem of 
    # hang caused by cross-creation of new_group
281 282 283
    tmp = paddle.to_tensor(
        [1], dtype="int32") if in_dygraph_mode() else fill_constant(
            [0], dtype="int32", value="1")
284 285
    paddle.distributed.all_reduce(tmp, use_calc_stream=True)
    paddle.distributed.wait(tmp)
K
kuizhiqing 已提交
286 287
    return gp

288

K
kuizhiqing 已提交
289 290 291 292 293 294 295 296
def wait(tensor, group=None, use_calc_stream=True):
    """

    wait to sync stream for group.

    Args:
        tensor (Tensor): The Tensor used before sync.
        group (Group): The Group instance to perform sync.
K
kuizhiqing 已提交
297 298
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
K
kuizhiqing 已提交
299 300 301 302 303 304 305 306 307 308

    Returns:
        None.

    Examples:
        .. code-block:: python

            import paddle

            paddle.distributed.init_parallel_env()
K
kuizhiqing 已提交
309
            tindata = paddle.randn(shape=[2, 3])
K
kuizhiqing 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
            paddle.distributed.all_reduce(tindata, use_calc_stream=True)
            paddle.distributed.wait(tindata)

    """

    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id

    if use_calc_stream:
        _sync_calc_stream(tensor)
    else:
        _sync_comm_stream(tensor, ring_id)


def _sync_calc_stream(tensor):

    if in_dygraph_mode():
W
wanghuancoder 已提交
329
        return _C_ops.c_sync_calc_stream(tensor, tensor)
K
kuizhiqing 已提交
330 331 332 333 334 335 336 337

    op_type = 'c_sync_calc_stream'

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]}, )
338

339

K
kuizhiqing 已提交
340
def _sync_comm_stream(tensor, ring_id=0):
341

K
kuizhiqing 已提交
342
    if in_dygraph_mode():
W
wanghuancoder 已提交
343
        return _C_ops.c_sync_comm_stream([tensor], [tensor], 'ring_id', ring_id)
344

K
kuizhiqing 已提交
345
    op_type = 'c_sync_comm_stream'
346

K
kuizhiqing 已提交
347 348 349 350 351 352 353 354 355
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={'ring_id': ring_id}, )


def broadcast(tensor, src, group=None, use_calc_stream=True):
356 357 358
    """

    Broadcast a tensor from the source to all others.
359 360 361 362 363 364 365
    As shown below, 4 GPUs each start 4 processes and GPU0 owns data 0. Through broadcast operator,
    the data 0 will be sent to all GPUs from GPU0.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/broadcast.png
        :width: 800
        :alt: broadcast
        :align: center
366 367 368 369 370

    Args:
        tensor (Tensor): The Tensor to send if current rank is the source, or the tensor to receive otherwise. Its data type
            should be float16, float32, float64, int32 or int64.
        src (int): The source rank.
K
kuizhiqing 已提交
371
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
372 373
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
374 375 376 377 378 379 380

    Returns:
        None.

    Examples:
        .. code-block:: python

381
            # required: distributed
382 383 384 385 386 387 388 389 390 391 392 393 394 395
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.broadcast(data, 1)
            out = data.numpy()
            # [[1, 2, 3], [1, 2, 3]]
396
    """
K
kuizhiqing 已提交
397 398 399 400 401 402 403 404 405

    if group is not None and not group.is_member():
        return

    if not isinstance(src, int):
        raise ValueError("src should be int.")

    ring_id = 0 if group is None else group.id
    gsrc = src if group is None else group.get_group_rank(src)
K
kuizhiqing 已提交
406
    assert gsrc >= 0, ("src rank out of group, need global rank")
K
kuizhiqing 已提交
407

408
    if in_dygraph_mode():
W
wanghuancoder 已提交
409 410 411
        return _C_ops.c_broadcast(tensor, tensor, 'root', gsrc,
                                  'use_calc_stream', use_calc_stream, 'ring_id',
                                  ring_id)
412 413 414 415 416 417 418 419 420 421 422 423

    op_type = 'c_broadcast'
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'broadcast')

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={
K
kuizhiqing 已提交
424 425 426
            'root': gsrc,
            'use_calc_stream': use_calc_stream,
            'ring_id': ring_id,
427 428 429
        })


K
kuizhiqing 已提交
430
def all_reduce(tensor, op=ReduceOp.SUM, group=None, use_calc_stream=True):
431 432 433
    """

    Reduce a tensor over all ranks so that all get the result.
434 435 436 437 438 439 440 441
    As shown below, 4 GPUs each start 4 processes and the data on each GPU is represnted
    by the GPU number. The reduce operator is sum. Through all_reduce operator, 
    each GPU will have the sum of the data from all GPUs.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/allreduce.png
        :width: 800
        :alt: all_reduce
        :align: center
442 443 444 445

    Args:
        tensor (Tensor): The input Tensor. It also works as the output Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
K
kuizhiqing 已提交
446
        op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.Min|ReduceOp.PROD): Optional. The operation used. Default value is ReduceOp.SUM.
K
kuizhiqing 已提交
447
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
448 449
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
450 451 452 453 454 455 456

    Returns:
        None.

    Examples:
        .. code-block:: python

457
            # required: distributed
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
            import numpy as np
            import paddle
            from paddle.distributed import ReduceOp
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.all_reduce(data)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
473
    """
K
kuizhiqing 已提交
474 475 476 477
    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id
478 479
    if in_dygraph_mode():
        if op == ReduceOp.SUM:
W
wanghuancoder 已提交
480 481
            return _C_ops.c_allreduce_sum_(tensor, 'use_calc_stream',
                                           use_calc_stream, 'ring_id', ring_id)
482
        elif op == ReduceOp.MAX:
W
wanghuancoder 已提交
483 484
            return _C_ops.c_allreduce_max_(tensor, 'use_calc_stream',
                                           use_calc_stream, 'ring_id', ring_id)
485
        elif op == ReduceOp.MIN:
W
wanghuancoder 已提交
486 487
            return _C_ops.c_allreduce_min_(tensor, 'use_calc_stream',
                                           use_calc_stream, 'ring_id', ring_id)
488
        elif op == ReduceOp.PROD:
W
wanghuancoder 已提交
489 490
            return _C_ops.c_allreduce_prod_(tensor, 'use_calc_stream',
                                            use_calc_stream, 'ring_id', ring_id)
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
        else:
            raise ValueError("Unknown parameter: {}.".format(op))

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'all_reduce')
    if not op in [ReduceOp.SUM, ReduceOp.MAX, ReduceOp.MIN, ReduceOp.PROD]:
        raise ValueError("The op for all_reduce must be one of educeOp.PROD, "
                         "ReduceOp.SUM, ReduceOp.MAX, ReduceOp.MIN.")
    if op == ReduceOp.SUM:
        op_type = 'c_allreduce_sum'
    elif op == ReduceOp.MAX:
        op_type = 'c_allreduce_max'
    elif op == ReduceOp.MIN:
        op_type = 'c_allreduce_min'
    elif op == ReduceOp.PROD:
        op_type = 'c_allreduce_prod'
K
kuizhiqing 已提交
508 509
    if not isinstance(ring_id, int):
        raise ValueError("The type of 'ring_id' for all_reduce should be int.")
510 511 512 513 514
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
K
kuizhiqing 已提交
515 516
        attrs={'ring_id': ring_id,
               'use_calc_stream': use_calc_stream})
517 518


K
kuizhiqing 已提交
519
def reduce(tensor, dst, op=ReduceOp.SUM, group=None, use_calc_stream=True):
520 521
    """

522 523 524 525 526 527 528 529
    Reduce a tensor to the destination from all others. As shown below, 4 GPUs each start 4 processes and the data on each GPU is respresnted
    by the GPU number. The destination of the reduce operator is GPU0 and the process is sum. Through reduce operator,
    the GPU0 will owns the sum of all data from all GPUs.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/reduce.png
        :width: 800
        :alt: reduce
        :align: center
530 531 532 533 534

    Args:
        tensor (Tensor): The output Tensor for the destination and the input Tensor otherwise. Its data type
            should be float16, float32, float64, int32 or int64.
        dst (int): The destination rank id.
K
kuizhiqing 已提交
535
        op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.Min|ReduceOp.PROD): Optional. The operation used. Default value is ReduceOp.SUM.
K
kuizhiqing 已提交
536
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
537 538
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
539 540 541 542 543 544 545

    Returns:
        None.

    Examples:
        .. code-block:: python

546
            # required: distributed
547 548 549 550 551 552 553 554 555 556 557 558 559 560
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.reduce(data, 0)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
561
    """
K
kuizhiqing 已提交
562 563 564 565 566 567 568 569
    if group is not None and not group.is_member():
        return

    if not isinstance(dst, int):
        raise ValueError("dst should be int.")

    ring_id = 0 if group is None else group.id
    gdst = dst if group is None else group.get_group_rank(dst)
K
kuizhiqing 已提交
570
    assert gdst >= 0, ("dst rank out of group, need global rank")
K
kuizhiqing 已提交
571

572 573
    if in_dygraph_mode():
        if op == ReduceOp.SUM:
W
wanghuancoder 已提交
574 575 576
            return _C_ops.c_reduce_sum(tensor, tensor, 'use_calc_stream',
                                       use_calc_stream, 'ring_id', ring_id,
                                       'root_id', gdst)
577
        elif op == ReduceOp.MAX:
W
wanghuancoder 已提交
578 579 580
            return _C_ops.c_reduce_max(tensor, tensor, 'use_calc_stream',
                                       use_calc_stream, 'ring_id', ring_id,
                                       'root_id', gdst)
581
        elif op == ReduceOp.MIN:
W
wanghuancoder 已提交
582 583 584
            return _C_ops.c_reduce_min(tensor, tensor, 'use_calc_stream',
                                       use_calc_stream, 'ring_id', ring_id,
                                       'root_id', gdst)
585
        elif op == ReduceOp.PROD:
W
wanghuancoder 已提交
586 587 588
            return _C_ops.c_reduce_prod(tensor, tensor, 'use_calc_stream',
                                        use_calc_stream, 'ring_id', ring_id,
                                        'root_id', gdst)
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
        else:
            raise ValueError("Unknown parameter: {}.".format(op))

    op_type = 'c_reduce'
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'all_reduce')
    if not op in [ReduceOp.SUM, ReduceOp.MAX, ReduceOp.MIN, ReduceOp.PROD]:
        raise ValueError("The op for reduce must be one of educeOp.PROD, "
                         "ReduceOp.SUM, ReduceOp.MAX, ReduceOp.MIN.")

    if op == ReduceOp.SUM:
        op_type = 'c_reduce_sum'
    elif op == ReduceOp.MAX:
        op_type = 'c_reduce_max'
    elif op == ReduceOp.MIN:
        op_type = 'c_reduce_min'
    elif op == ReduceOp.PROD:
        op_type = 'c_reduce_prod'

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={
K
kuizhiqing 已提交
615 616 617
            'ring_id': ring_id,
            'use_calc_stream': use_calc_stream,
            'root_id': gdst,
618 619 620
        })


K
kuizhiqing 已提交
621
def all_gather(tensor_list, tensor, group=None, use_calc_stream=True):
622 623
    """

624 625 626 627 628 629 630 631 632
    Gather tensors from all participators and all get the result. As shown
    below, 4 GPUs each start 4 processes and the data on each GPU is represnted
    by the GPU number. Through the all_gather operator, each GPU will have data
    from all GPUs.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/allgather.png
        :width: 800
        :alt: all_gather
        :align: center
633 634 635 636 637 638

    Args:
        tensor_list (list): A list of output Tensors. Every element in the list must be a Tensor whose data type
            should be float16, float32, float64, int32 or int64.
        tensor (Tensor): The Tensor to send. Its data type
            should be float16, float32, float64, int32 or int64.
K
kuizhiqing 已提交
639
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
640 641
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
642 643 644 645 646 647 648

    Returns:
        None.

    Examples:
        .. code-block:: python

649
            # required: distributed
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            tensor_list = []
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data1 = np.array([[4, 5, 6], [4, 5, 6]])
                np_data2 = np.array([[4, 5, 6], [4, 5, 6]])
                data1 = paddle.to_tensor(np_data1)
                data2 = paddle.to_tensor(np_data2)
                paddle.distributed.all_gather(tensor_list, data1)
            else:
                np_data1 = np.array([[1, 2, 3], [1, 2, 3]])
                np_data2 = np.array([[1, 2, 3], [1, 2, 3]])
                data1 = paddle.to_tensor(np_data1)
                data2 = paddle.to_tensor(np_data2)
                paddle.distributed.all_gather(tensor_list, data2)
669
    """
K
kuizhiqing 已提交
670 671 672 673 674 675
    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id
    nranks = _get_global_group().nranks if group is None else group.nranks

676
    if in_dygraph_mode():
677 678
        out = _C_ops.c_allgather(tensor, 'use_calc_stream', use_calc_stream,
                                 'ring_id', ring_id, 'nranks', nranks)
679
    else:
680 681 682
        op_type = 'c_allgather'
        helper = LayerHelper(op_type, **locals())
        out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
        if not isinstance(tensor_list, list):
            raise ValueError("The type of 'tensor_list' for all_gather "
                             "should be list.")
        for elem in tensor_list:
            check_variable_and_dtype(
                elem, 'tensor_list',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'all_gather')
        check_variable_and_dtype(
            tensor, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], 'all_gather')
        helper.append_op(
            type=op_type,
            inputs={'X': [tensor]},
            outputs={'Out': [out]},
            attrs={
K
kuizhiqing 已提交
699 700 701
                'ring_id': ring_id,
                'use_calc_stream': use_calc_stream,
                'nranks': nranks
702 703
            })

K
kuizhiqing 已提交
704
    tensor_list.extend(paddle.split(out, nranks, 0))
705 706


K
kuizhiqing 已提交
707
def scatter(tensor, tensor_list=None, src=0, group=None, use_calc_stream=True):
708 709
    """

710 711 712 713 714 715 716
    Scatter a tensor to all participators. As shown below, 4 GPUs each start 4 processes and the source of the scatter
    is GPU0. Through scatter operator, the data in GPU0 will be sent to all GPUs averagely.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/scatter.png
        :width: 800
        :alt: scatter
        :align: center
717 718 719 720

    Args:
        tensor (Tensor): The output Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
721
        tensor_list (list|tuple): A list/tuple of Tensors to scatter. Every element in the list must be a Tensor whose data type
K
kuizhiqing 已提交
722 723
            should be float16, float32, float64, int32 or int64. Default value is None.
        src (int): The source rank id. Default value is 0.
K
kuizhiqing 已提交
724
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
725 726
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
727 728 729 730 731 732 733

    Returns:
        None.

    Examples:
        .. code-block:: python

734
            # required: distributed
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data1 = np.array([7, 8, 9])
                np_data2 = np.array([10, 11, 12])
            else:
                np_data1 = np.array([1, 2, 3])
                np_data2 = np.array([4, 5, 6])
            data1 = paddle.to_tensor(np_data1)
            data2 = paddle.to_tensor(np_data2)
            if paddle.distributed.ParallelEnv().local_rank == 0:
                paddle.distributed.scatter(data1, src=1)
            else:
                paddle.distributed.scatter(data1, tensor_list=[data1, data2], src=1)
            out = data1.numpy()
754
    """
K
kuizhiqing 已提交
755 756 757 758 759 760 761 762
    if group is not None and not group.is_member():
        return

    if not isinstance(src, int):
        raise ValueError("src should be int.")

    ring_id = 0 if group is None else group.id
    gsrc = src if group is None else group.get_group_rank(src)
K
kuizhiqing 已提交
763
    assert gsrc >= 0, ("src rank out of group, need global rank")
K
kuizhiqing 已提交
764 765 766 767
    rank = _get_global_group().rank if group is None else group.rank
    nranks = _get_global_group().nranks if group is None else group.nranks

    if rank != gsrc:
768 769 770 771 772
        tensor_list = []
        for _ in range(nranks):
            tensor_list.append(tensor)
    temp = paddle.concat(tensor_list, axis=0)
    if in_dygraph_mode():
W
wanghuancoder 已提交
773 774 775
        return _C_ops.c_scatter(temp, tensor, 'use_calc_stream',
                                use_calc_stream, 'ring_id', ring_id, 'nranks',
                                nranks, 'root', gsrc)
W
wanghuancoder 已提交
776
    op_type = 'c_scatter'
777 778 779 780 781 782 783 784 785
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'scatter')
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [temp]},
        outputs={'Out': [tensor]},
        attrs={
K
kuizhiqing 已提交
786 787 788
            'ring_id': ring_id,
            'root': gsrc,
            'use_calc_stream': use_calc_stream,
789 790 791 792
            'nranks': nranks,
        })


793
def _c_identity(tensor, group=None):
L
lilong12 已提交
794 795 796 797 798 799 800 801 802 803 804
    """
    Return a copy of the tensor, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
805 806 807 808 809
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    if in_dygraph_mode():
W
wanghuancoder 已提交
810 811
        return _C_ops.c_identity(tensor, 'use_calc_stream', True, 'ring_id',
                                 ring_id, 'use_model_parallel', True)
L
lilong12 已提交
812 813 814
    op_type = 'c_identity'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
815

L
lilong12 已提交
816 817 818
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_identity')
819

L
lilong12 已提交
820 821 822 823 824
    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
825
            'ring_id': ring_id,
L
lilong12 已提交
826 827 828 829 830 831
            'use_calc_stream': True,
            'use_model_parallel': True,
        })
    return out


832
def _c_concat(tensor, group=None):
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
    """
    Return allgather of the tensor, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

848 849 850 851
    global_rank = _get_global_env().rank
    rank = global_rank if group is None else group.get_group_rank(global_rank)
    nranks = _get_global_env().world_size if group is None else group.nranks

852
    if in_dygraph_mode():
W
wanghuancoder 已提交
853 854 855
        return _C_ops.c_concat(tensor, 'ring_id', ring_id, 'use_calc_stream',
                               True, 'rank', rank, 'nranks', nranks,
                               'use_model_parallel', True)
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872

    op_type = 'c_concat'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_concat')

    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
            'ring_id': ring_id,
            'use_calc_stream': True,
            'use_model_parallel': True,
873 874
            'nranks': nranks,
            'rank': rank
875 876 877 878
        })
    return out


879
def _c_split(tensor, group=None):
L
lilong12 已提交
880 881 882 883 884 885 886 887 888 889 890 891
    """
    Split tensor evenly among all members, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        rank (int): The rank of the current process.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
892 893 894 895
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

896 897 898 899
    global_rank = _get_global_env().rank
    rank = global_rank if group is None else group.get_group_rank(global_rank)
    nranks = _get_global_env().world_size if group is None else group.nranks

900
    if in_dygraph_mode():
W
wanghuancoder 已提交
901 902 903
        return _C_ops.c_split(tensor, 'use_calc_stream', True, 'ring_id',
                              ring_id, 'rank', rank, 'nranks', nranks,
                              'use_model_parallel', True)
904

L
lilong12 已提交
905 906 907
    op_type = 'c_split'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
908

L
lilong12 已提交
909 910 911
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_split')
912

L
lilong12 已提交
913 914 915 916 917
    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
918
            'ring_id': ring_id,
L
lilong12 已提交
919 920 921 922 923 924 925 926
            'use_calc_stream': True,
            'rank': rank,
            'nranks': nranks,
            'use_model_parallel': True,
        })
    return out


927 928 929 930 931 932 933 934 935 936 937 938 939
def _mp_allreduce(tensor,
                  op=ReduceOp.SUM,
                  group=None,
                  use_calc_stream=True,
                  use_model_parallel=True):
    """[it is same as allreduce above, but it suuports model parallel. And it support inplace startegy]
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    if in_dygraph_mode():
        if op == ReduceOp.SUM:
W
wanghuancoder 已提交
940
            return _C_ops.c_allreduce_sum_(
941 942 943 944
                tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id,
                "use_model_parallel", use_model_parallel)
        else:
            raise ValueError("Unknown parameter: {}.".format(op))
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963

    op_type = 'c_allreduce_sum'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        op_type)

    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
            'ring_id': ring_id,
            'use_calc_stream': use_calc_stream,
            'use_model_parallel': use_model_parallel,
        })
    return out
964 965


966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
def _c_lookup_table(table, index, start_index=0, name=None):
    """
    Lookup table according to index.

    Args:
        table (Tensor): The input Tensor. Its data type
            should be float16, float32, float64.
        index (Tensor): The index to lookup table.
        start_index (int): The initial index for table range.
        name (string): The name of the api

    Returns:
        Tensor.
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
981
        return _C_ops.c_embedding(table, index, "start_index", start_index)
982

983 984 985 986 987 988 989 990 991 992 993 994 995
    op_type = 'c_embedding'
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name='table')
    check_variable_and_dtype(index, 'input', ['int32', 'int64'], op_type)
    tmp = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='c_embedding',
        inputs={'Ids': index,
                'W': table},
        outputs={'Out': tmp},
        attrs={"start_index": start_index})
    return tmp

996

B
Baibaifan 已提交
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
class _Linear(layers.Layer):
    """
    Linear
    """

    def __init__(self,
                 in_features,
                 out_features,
                 weight_attr=None,
                 bias_attr=None,
                 name=None):
        super(_Linear, self).__init__()
        self._dtype = self._helper.get_default_dtype()
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        self.weight = self.create_parameter(
            shape=[in_features, out_features],
            attr=self._weight_attr,
            dtype=self._dtype,
            is_bias=False)
        self.bias = self.create_parameter(
            shape=[out_features],
            attr=self._bias_attr,
            dtype=self._dtype,
            is_bias=True)
        self.name = name

    def forward(self, input):
        out = _linear(
            x=input, weight=self.weight, bias=self.bias, name=self.name)
        return out

    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'in_features={}, out_features={}, dtype={}{}'.format(
            self.weight.shape[0], self.weight.shape[1], self._dtype, name_str)


1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
def _c_softmax_with_cross_entropy(logits,
                                  label,
                                  group=None,
                                  return_softmax=False):
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id
    global_rank = _get_global_env().rank
    rank = global_rank if group is None else group.get_group_rank(global_rank)
    nranks = _get_global_env().world_size if group is None else group.nranks

    input_dims = len(list(logits.shape))
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
            'Expected nput_dims - 1 = label_dims or input_dims == label_dims\
             (got nput_dims{}, label_dims{})'.format(input_dims, label_dims))
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=-1)

    if in_dygraph_mode():
W
wanghuancoder 已提交
1056
        softmax, loss = _C_ops.c_softmax_with_cross_entropy(
1057 1058 1059 1060 1061 1062
            logits, label, 'ring_id', ring_id, 'rank', rank, 'nranks', nranks)
        if not return_softmax:
            return loss
        else:
            return loss, softmax

W
WangXi 已提交
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
    attrs = {
        'ring_id': ring_id,
        'rank': rank,
        'nranks': nranks,
    }
    helper = LayerHelper('c_softmax_with_cross_entropy', **locals())
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    helper.append_op(
        type='c_softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs=attrs)

    if return_softmax:
        return loss, softmax

    return loss

1084

B
Baibaifan 已提交
1085 1086 1087 1088 1089 1090
def _linear(x, weight, bias=None, name=None):
    """
    Fuction Linear
    """
    if in_dygraph_mode():
        pre_bias = _varbase_creator(dtype=x.dtype)
W
wanghuancoder 已提交
1091 1092
        _C_ops.matmul(x, weight, pre_bias, 'transpose_X', False, 'transpose_Y',
                      False, "alpha", 1)
B
Baibaifan 已提交
1093 1094 1095 1096 1097
        return dygraph_utils._append_bias_in_dygraph(
            pre_bias, bias, axis=len(x.shape) - 1)
    else:
        helper = LayerHelper('linear', **locals())
        dtype = x.dtype
B
Baibaifan 已提交
1098 1099
        assert len(
            x.shape) < 4, "X latitude is not supported greater than 3 now."
B
Baibaifan 已提交
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126

        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'linear')
        check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'], 'linear')

        inputs = {'X': [x], 'Y': [weight]}
        attrs = {
            'transpose_X': False,
            'transpose_Y': False,
            'alpha': 1,
        }
        tmp = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='matmul_v2', inputs=inputs, outputs={'Out': tmp}, attrs=attrs)
        if bias is not None:
            res = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp],
                        'Y': [bias]},
                outputs={'Out': [res]},
                attrs={'axis': len(x.shape) - 1})
        else:
            res = tmp
        return res


1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
def _set_var_distributed(var):
    if var is None:
        return

    var.is_distributed = True

    # NOTE: use current_block and find_var_recursive to support while_loop
    startup_block = paddle.static.default_startup_program().current_block()
    main_block = paddle.static.default_main_program().current_block()
    startup_block._find_var_recursive(var.name).is_distributed = True
    main_block._find_var_recursive(var.name).is_distributed = True


L
lilong12 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
def _parallel_linear(x,
                     num_rows,
                     num_cols,
                     axis,
                     param_attr,
                     bias_attr,
                     gather_out,
                     inner_rank,
                     nranks,
                     split_tensor,
                     name,
1151
                     group=None):
1152 1153
    """
    Parallel Linear
1154 1155 1156

    axis the dimension of the parameter of linear layer. 
    axis = 0: the row dimension
1157
    axis = 1: the col dimension
1158
    
1159
    """
1160 1161 1162 1163
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

L
lilong12 已提交
1164 1165
    if axis == 0:
        if split_tensor:
1166
            x = _c_split(x, group=group)
1167
    else:
L
lilong12 已提交
1168 1169
        x = _c_identity(x, group=group)

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
    linear = paddle.nn.Linear(
        num_rows,
        num_cols,
        weight_attr=param_attr,
        bias_attr=bias_attr,
        name=name)

    # NOTE: npu linear function use matmul_v2 but linear use matmul
    linear_function = _linear if core.is_compiled_with_npu()\
        else paddle.nn.functional.linear
    linear_out = linear_function(
        x,
        linear.weight,
        # NOTE(wangxi): row split, bias need add after allreduce
        None if axis == 0 else linear.bias,
        linear.name)

    _set_var_distributed(linear.weight)
1188 1189 1190 1191
    # set is_distributed for splited bias
    # if a linear layer is splited by row, each rank would hold a complete bias and they should be the same in each rank.
    # if a linear layer is splited by col, the bias would also be split into each rank as its weight
    if axis == 1 and linear._bias_attr != False:
1192
        _set_var_distributed(linear.bias)
L
lilong12 已提交
1193 1194 1195 1196 1197

    if not gather_out: return linear_out

    out_shape = list(linear_out.shape)
    out_shape[0] *= 1 if axis == 0 else nranks
1198
    main_block = paddle.static.default_main_program().current_block()
L
lilong12 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
    out = main_block.create_var(
        shape=out_shape,
        dtype=linear_out.dtype,
        type=linear_out.type,
        lod_level=linear_out.lod_level,
        persistable=False,
        is_data=False,
        need_check_feed=linear_out.desc.need_check_feed())
    if axis == 0:
        main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': linear_out},
            outputs={'Out': out},
            attrs={
1213
                'ring_id': ring_id,
L
lilong12 已提交
1214 1215 1216
                'use_calc_stream': True,
                'use_model_parallel': True
            })
1217 1218
        if linear.bias is not None:
            out = out + linear.bias
L
lilong12 已提交
1219 1220 1221 1222 1223 1224
    else:
        main_block.append_op(
            type='c_concat',
            inputs={'X': linear_out},
            outputs={'Out': out},
            attrs={
1225
                'rank': inner_rank,
1226
                'ring_id': ring_id,
L
lilong12 已提交
1227 1228 1229 1230 1231
                'nranks': nranks,
                'use_calc_stream': True,
                'use_model_parallel': True
            })
    return out
1232 1233


L
lilong12 已提交
1234 1235 1236 1237 1238 1239 1240
def _parallel_embedding(x,
                        per_part_embeddings,
                        origin_size,
                        param_attr,
                        inner_rank,
                        num_partitions,
                        name,
1241
                        group=None):
1242 1243 1244
    """
    Parallel Embedding
    """
1245 1246 1247 1248
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
    helper = LayerHelper("_parallel_embedding", **locals())

    per_part_size = per_part_embeddings
    rank = inner_rank

    vocab_start_index = rank * per_part_size
    dtype = helper.get_default_dtype()
    size = [per_part_size, origin_size[1]]

    weight = helper.create_parameter(
        attr=param_attr, shape=size, dtype=dtype, is_bias=False)

    if num_partitions == 1:
        return paddle.nn.functional.embedding(
            x, weight=weight, padding_idx=None, sparse=False, name=name)

1265 1266
    startup_block = paddle.static.default_startup_program().global_block()
    main_block = paddle.static.default_main_program().global_block()
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
    startup_block.vars[weight.name].is_distributed = True
    main_block.vars[weight.name].is_distributed = True

    output_parallel = paddle.distributed.collective._c_lookup_table(
        weight, x, start_index=vocab_start_index, name=name)
    out = paddle.distributed.collective._mp_allreduce(
        output_parallel,
        group=group,
        use_calc_stream=True,
        use_model_parallel=True)
L
lilong12 已提交
1277
    return out
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300


def split(x,
          size,
          operation,
          axis=0,
          num_partitions=1,
          gather_out=True,
          weight_attr=None,
          bias_attr=None,
          name=None):
    """

    Split the weight of the specified operation into multiple devices
    and do the computation in parallel.

    Now the following three cases are supported.

    Case 1: Parallel Embedding
        The weight of the embedding operation is a NxM matrix with N rows and M columns.
        With parallel embedding, the weight is split into num_partitions partitions, each
        of which is a matrix with (N/num_partitions + 1) rows and M column where the last
        row as the padding idx.
K
kuizhiqing 已提交
1301

1302 1303 1304 1305 1306 1307 1308 1309 1310
        Suppose we split the NxM weight into two partitons on device_0 and device_1
        respectively. Then, one each device, the final weight has (N/2 + 1) rows with the
        index range from 0 to N/2. On device_0, all values in the input within [0, N/2 -1]
        keep unchanged and all other values are changed to N/2 which is the padding index and
        are mapped to all zeros after embedding. In the same way, on device_1, the value V in the
        input within [N/2, N-1] will be changed to (V - N/2), and all other values are changed
        to N/2 and are mapped to all zeros after embedding. Finally, the results on the two
        devices are sum-reduced.

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
        The Embedding put on single card is as shown below:

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_embedding_single.png
            :width: 800
            :height: 350
            :alt: single_embedding
            :align: center

        Parallel Embedding is shown as below:

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_embedding_split.png
            :width: 800
            :alt: split_embedding
            :align: center

1326 1327 1328 1329 1330
    Case 2: Row Parallel Linear
        The weight of the linear operation is a NxM matrix with N rows and M columns.
        With row parallel linear, the weight is split into num_partitions partitions, each
        of which is a matrix with N/num_partitions rows and M column.

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
        The linear layer put on single card is shown as below, the input variable is represented by X,
        the weight matrix is represented by W and the output vaiable is O. The linear layer on single card is 
        simple matrix multiplication operation, O = X * W.

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_single.png
            :width: 800
            :alt: single_linear
            :align: center

        Row Parallel Linear is shown as below. As the name suggests, Row Parallel Linear splits the weight matrix W into
        [[W_row1], [W_row2]] along the row. And accordingly the input is splitted along the column into [X_col1, X_col2] and multiply their
        respective weight matrices. Finally apply AllReduce on the output from each card to get the final output.

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_row.png
            :width: 800
            :alt: split_row
            :align: center

1349 1350 1351 1352 1353
    Case 3: Column Parallel Linear
        The weight of the linear operation is a NxM matrix with N rows and M columns.
        With column parallel linear, the weight is split into num_paratitions partitions, each
        of which is a matrix with N rows and M/num_partitions column.

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
        The linear layer put on single card has been illustrated on case 2 and Column Parallel Linear
        is shown as below. The Column Parallel Linear splits the weight matrix W into [W_col1, W_col2] along the column and 
        these splitted matrices respectively multiply the input. Finally apply AllGather on the output from each card to get the final output. 

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_col.png
            :width: 800
            :alt: split_col
            :align: center
    
    As observed, the column parallel linear and row parallel linear can be combined to skip one ALLGATHER communication
    operator. Furthermore the Attention and MLP can be combined to imporve the performance as shown below.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_col_row.png
            :width: 800
            :alt: split_col_row
            :align: center

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
    Args:
        x (Tensor): Input tensor. It's data type should be float16, float32, float64, int32 or int64.
        size (list|tuple): A list or tuple with two elements indicating the shape of the weight.
        operation (str): The name of the operation. The supported operations are 'linear' and 'embedding'.
        axis (int, Optional): Indicate along which axis to split the weight. Default: 0.
        num_partitions (int, Optional): How many parts the weight is partitioned. Default: 1.
        gather_out (bool, Optional): Whether to gather the output after computation. By default, the output
            on each partitions will be gathered after computation. Default: True.
        weight_attr (ParamAttr, Optional): The parameter attribute for the learnable
            weights(Parameter) of the specified operation. Default: None.
        bias_attr (ParamAttr, Optional): The parameter attribute for the bias
            of the specified operation. Default: None.
        name (str, Optional): The default value is None. Normally there is no need for user to set this
            property. Default: None. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor.

    Examples:
        .. code-block:: python
1391

1392
            # required: distributed
1393
            import paddle
1394
            import paddle.distributed.fleet as fleet
1395

1396
            paddle.enable_static()
1397
            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
1398
            fleet.init(is_collective=True)
1399
            data = paddle.randint(0, 8, shape=[10,4])
1400
            emb_out = paddle.distributed.split(
1401 1402 1403 1404
                data,
                (8, 8),
                operation="embedding",
                num_partitions=2)
1405

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
    """
    assert isinstance(size, (list, tuple)), (
        "The type of size for "
        "paddle.distributed.split must be list or tuple.")
    assert len(size) == 2, ("Number of elements in size of "
                            "paddle.distributed.split must be two.")
    assert isinstance(operation, str), ("The type of operation for "
                                        "paddle.distributed.split must be str.")
    supported_operations = [
        'linear',
        'embedding',
    ]
    assert operation in supported_operations, (
        "The operation for "
        "paddle.distributed.split must be one of {}.".format(
            supported_operations))
    if in_dygraph_mode():
L
lilong12 已提交
1423 1424 1425 1426
        raise ValueError(
            "paddle.distributed.split cannot be used in dynamic "
            "graph mode, plese use ParallelEmbedding, ParallelRowLinear, "
            "ParallelColumnLinear instead.")
1427
    else:
1428
        from .fleet import fleet
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
        assert fleet._role_maker, ("To use paddle.distributed.split, "
                                   "you must call fleet.init() firstly.")
        rank = fleet.worker_index()
        nranks = fleet.worker_num()

    # rank within a model parallel group
    inner_rank = rank % num_partitions

    if operation == "embedding":
        assert axis == 0, ("We only support to split the weight of embedding "
                           "along the first axis now.")
1440 1441 1442
        assert size[0] % num_partitions == 0, \
            "The length of the vocabulary must be divisible by num_partitions " \
            "but received vocabulary={} num_partitions={}".format(size[0], num_partitions)
1443

1444
        per_part_size = size[0] // num_partitions
B
Baibaifan 已提交
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
        emb_out = _parallel_embedding(
            x,
            per_part_size,
            size,
            weight_attr,
            inner_rank,
            num_partitions,
            name,
            group=None)
        return emb_out
1455
    else:
L
lilong12 已提交
1456
        should_split = False
1457 1458 1459 1460 1461 1462 1463
        if axis == 0:
            assert size[0] % num_partitions == 0, (
                "Number of rows of the weight for linear ({}) must be"
                " divisible by num_partitions ({})".format(size[0],
                                                           num_partitions))
            per_part_size = size[0] // num_partitions
            linear_size = (per_part_size, size[1])
L
lilong12 已提交
1464
            if x.shape[-1] == size[0]: should_split = True
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485

        elif axis == 1:
            assert size[1] % num_partitions == 0, (
                "Number of column of the weight for linear ({}) must be"
                " divisible by num_partitions ({})".format(size[1],
                                                           num_partitions))
            per_part_size = size[1] // num_partitions
            linear_size = (size[0], per_part_size)
        else:
            raise ValueError("The value of axis must be 0 or 1, but the value "
                             "given is {}.".format(axis))

        linear_out = _parallel_linear(
            x,
            linear_size[0],
            linear_size[1],
            axis,
            weight_attr,
            bias_attr,
            gather_out,
            inner_rank,
L
lilong12 已提交
1486 1487 1488
            num_partitions,
            should_split,
            name=name,
1489
            group=None)
1490
        return linear_out
L
lilong12 已提交
1491 1492


L
lilong12 已提交
1493 1494
def alltoall(in_tensor_list, out_tensor_list, group=None, use_calc_stream=True):
    """
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
    Scatter tensors in in_tensor_list to all participators averagely and gather the result tensors in out_tensor_list.
    As shown below, the in_tensor_list in GPU0 includes 0_0 and 0_1, and GPU1 includes 1_0 and 1_1.
    Through alltoall operator, the 0_0 in GPU0 will be sent to GPU0 and 0_1 to GPU1, 1_0 in GPU1 sent to GPU0 and 1_1 to GPU1.
    Finally the out_tensor_list in GPU0 includes 0_0 and 1_0, and GPU1 includes 0_1 and 1_1.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/alltoall.png
        :width: 800
        :alt: alltoall
        :align: center

L
lilong12 已提交
1505 1506 1507 1508 1509 1510 1511
    Args:
        in_tensor_list (list): A list of input Tensors. Every element in the list must be a Tensor whose data type
            should be float16, float32, float64, int32 or int64.
        out_tensor_list (Tensor): A list of output Tensors. The data type of its elements should be the same as the
            data type of the input Tensors.
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
        use_calc_stream (bool, optional): Wether to use calculation stream (True) or communication stream. Default: True.
1512
    
L
lilong12 已提交
1513 1514
    Returns:
        None.
1515
    
L
lilong12 已提交
1516 1517
    Examples:
        .. code-block:: python
1518

L
lilong12 已提交
1519 1520 1521 1522
            # required: distributed
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env
1523
            
L
lilong12 已提交
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
            init_parallel_env()
            out_tensor_list = []
            if paddle.distributed.ParallelEnv().rank == 0:
                np_data1 = np.array([[1, 2, 3], [4, 5, 6]])
                np_data2 = np.array([[7, 8, 9], [10, 11, 12]])
            else:
                np_data1 = np.array([[13, 14, 15], [16, 17, 18]])
                np_data2 = np.array([[19, 20, 21], [22, 23, 24]])
            data1 = paddle.to_tensor(np_data1)
            data2 = paddle.to_tensor(np_data2)
李季 已提交
1534
            paddle.distributed.alltoall([data1, data2], out_tensor_list)
L
lilong12 已提交
1535 1536 1537 1538 1539 1540 1541 1542
            # out for rank 0: [[[1, 2, 3], [4, 5, 6]], [[13, 14, 15], [16, 17, 18]]]
            # out for rank 1: [[[7, 8, 9], [10, 11, 12]], [[19, 20, 21], [22, 23, 24]]]
    """
    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id
    temp = paddle.concat(in_tensor_list, axis=0)
李季 已提交
1543
    nranks = len(in_tensor_list)
L
lilong12 已提交
1544
    if in_dygraph_mode():
李季 已提交
1545 1546
        out = _C_ops.alltoall(temp, 'use_calc_stream', use_calc_stream,
                              'ring_id', ring_id)
L
lilong12 已提交
1547
    else:
W
wanghuancoder 已提交
1548 1549 1550 1551 1552
        op_type = 'alltoall'
        helper = LayerHelper(op_type, **locals())
        out = helper.create_variable_for_type_inference(
            dtype=in_tensor_list[0].dtype)

L
lilong12 已提交
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
        if not isinstance(in_tensor_list, list):
            raise ValueError("The type of 'in_tensor_list' for all_to_all "
                             "should be list.")
        for elem in in_tensor_list:
            check_variable_and_dtype(
                elem, 'in_tensor_list',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'all_to_all')
        if not isinstance(out_tensor_list, list):
            raise ValueError("The type of 'out_tensor_list' for all_to_all "
                             "should be list.")
        if len(out_tensor_list) != 0:
            raise ValueError("The 'out_tensor_list' for all_to_all "
                             "must be an empty list.")
        helper.append_op(
            type=op_type,
            inputs={'X': [temp]},
            outputs={'Out': [out]},
            attrs={
L
lilong12 已提交
1572
                'ring_id': ring_id,
L
lilong12 已提交
1573 1574 1575 1576 1577
                'use_calc_stream': use_calc_stream,
            })
    out_tensor_list.extend(paddle.split(out, nranks, 0))


L
lilong12 已提交
1578 1579 1580 1581 1582 1583 1584 1585
def send(tensor, dst=0, group=None, use_calc_stream=True):
    """
    Send a tensor to the receiver.

    Args:
        tensor (Tensor): The Tensor to send. Its data type
            should be float16, float32, float64, int32 or int64.
        dst (int): The destination rank id.
L
lilong12 已提交
1586 1587
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
        use_calc_stream (bool, optional): Whether to use calculate stream or communication stream. Default: True.
1588
    
L
lilong12 已提交
1589 1590 1591 1592 1593
    Returns:
        None.

    Examples:
        .. code-block:: python
1594

L
lilong12 已提交
1595
            # required: distributed
L
lilong12 已提交
1596
            import paddle
L
lilong12 已提交
1597
            from paddle.distributed import init_parallel_env
1598

L
lilong12 已提交
1599 1600 1601 1602 1603 1604 1605 1606
            init_parallel_env()
            if paddle.distributed.ParallelEnv().rank == 0:
                data = paddle.to_tensor([7, 8, 9])
                paddle.distributed.send(data, dst=1)
            else:
                data = paddle.to_tensor([1,2,3])
                paddle.distributed.recv(data, src=0)
            out = data.numpy()
L
lilong12 已提交
1607 1608 1609 1610 1611 1612
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    if in_dygraph_mode():
W
wanghuancoder 已提交
1613 1614
        return _C_ops.send_v2(tensor, 'use_calc_stream', use_calc_stream,
                              'ring_id', ring_id, 'peer', dst)
W
wanghuancoder 已提交
1615
    op_type = 'send_v2'
L
lilong12 已提交
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'send')

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        attrs={
            'ring_id': ring_id,
            'peer': dst,
            'use_calc_stream': use_calc_stream,
        })


def recv(tensor, src=0, group=None, use_calc_stream=True):
    """
    Receive a tensor to the sender.

    Args:
        tensor (Tensor): The Tensor to receive. Its data type
            should be float16, float32, float64, int32 or int64.
        src (int): The source rank id.
L
lilong12 已提交
1639 1640
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
        use_calc_stream (bool, optional): Whether to use calculate stream or communication stream. Default: True.
1641
    
L
lilong12 已提交
1642 1643 1644 1645 1646
    Returns:
        None.

    Examples:
        .. code-block:: python
1647

L
lilong12 已提交
1648
            # required: distributed
L
lilong12 已提交
1649
            import paddle
L
lilong12 已提交
1650
            from paddle.distributed import init_parallel_env
1651

L
lilong12 已提交
1652 1653 1654 1655 1656 1657 1658 1659
            init_parallel_env()
            if paddle.distributed.ParallelEnv().rank == 0:
                data = paddle.to_tensor([7, 8, 9])
                paddle.distributed.send(data, dst=1)
            else:
                data = paddle.to_tensor([1,2,3])
                paddle.distributed.recv(data, src=0)
            out = data.numpy()
L
lilong12 已提交
1660 1661 1662 1663 1664 1665
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    if in_dygraph_mode():
W
wanghuancoder 已提交
1666 1667 1668
        return _C_ops.recv_v2(tensor, 'use_calc_stream', use_calc_stream,
                              'ring_id', ring_id, 'peer', src, 'dtype',
                              tensor.dtype, 'out_shape', tensor.shape)
W
wanghuancoder 已提交
1669
    op_type = 'recv_v2'
L
lilong12 已提交
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'recv')
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        outputs={'Out': [tensor]},
        attrs={
            'ring_id': ring_id,
            'peer': src,
            'out_shape': tensor.shape,
            'dtype': tensor.dtype,
            'use_calc_stream': use_calc_stream,
        })