gan_trainer_image.py 11.5 KB
Newer Older
W
wangyang59 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import itertools
import random
import numpy
W
wangyang59 已提交
19
import cPickle
20
import sys,os,gc
W
wangyang59 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
from PIL import Image

from paddle.trainer.config_parser import parse_config
from paddle.trainer.config_parser import logger
import py_paddle.swig_paddle as api

def CHECK_EQ(a, b):
    assert a == b, "a=%s, b=%s" % (a, b)


def copy_shared_parameters(src, dst):
    src_params = [src.getParameter(i)
               for i in xrange(src.getParameterSize())]
    src_params = dict([(p.getName(), p) for p in src_params])


    for i in xrange(dst.getParameterSize()):
        dst_param = dst.getParameter(i)
        src_param = src_params.get(dst_param.getName(), None)
        if src_param is None:
            continue
        src_value = src_param.getBuf(api.PARAMETER_VALUE)
        dst_value = dst_param.getBuf(api.PARAMETER_VALUE)
        CHECK_EQ(len(src_value), len(dst_value))
        dst_value.copyFrom(src_value)
        dst_param.setValueUpdated()
        
def print_parameters(src):
    src_params = [src.getParameter(i)
               for i in xrange(src.getParameterSize())]

    print "***************"
    for p in src_params:
        print "Name is %s" % p.getName()
        print "value is %s \n" % p.getBuf(api.PARAMETER_VALUE).copyToNumpyArray()

def load_mnist_data(imageFile):
    f = open(imageFile, "rb")
    f.read(16)

    # Define number of samples for train/test
    if "train" in imageFile:
        #n = 60000
        n = 60000
    else:
        n = 10000
    
    data = numpy.zeros((n, 28*28), dtype = "float32")
    
    for i in range(n):
        pixels = []
        for j in range(28 * 28):
W
wangyang59 已提交
73
            pixels.append(float(ord(f.read(1))) / 255.0 * 2.0 - 1.0)
W
wangyang59 已提交
74 75 76 77 78
        data[i, :] = pixels

    f.close()
    return data

W
wangyang59 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91
def load_cifar_data(cifar_path):
    batch_size = 10000
    data = numpy.zeros((5*batch_size, 32*32*3), dtype = "float32")
    for i in range(1, 6):
        file = cifar_path + "/data_batch_" + str(i)
        fo = open(file, 'rb')
        dict = cPickle.load(fo)
        fo.close()
        data[(i - 1)*batch_size:(i*batch_size), :] = dict["data"]
    
    data = data / 255.0 * 2.0 - 1.0
    return data

92
def merge(images, size):
W
wangyang59 已提交
93 94 95 96 97
    if images.shape[1] == 28*28:
        h, w, c = 28, 28, 1
    else:
        h, w, c = 32, 32, 3
    img = numpy.zeros((h * size[0], w * size[1], c))
98 99 100
    for idx in xrange(size[0] * size[1]):
        i = idx % size[1]
        j = idx // size[1]
W
wangyang59 已提交
101 102 103 104
        #img[j*h:j*h+h, i*w:i*w+w, :] = (images[idx, :].reshape((h, w, c), order="F") + 1.0) / 2.0 * 255.0
        img[j*h:j*h+h, i*w:i*w+w, :] = \
          ((images[idx, :].reshape((h, w, c), order="F").transpose(1, 0, 2) + 1.0) / 2.0 * 255.0)
    return img.astype('uint8')
105

W
wangyang59 已提交
106
def saveImages(images, path):
107
    merged_img = merge(images, [8, 8])
W
wangyang59 已提交
108 109 110 111
    if merged_img.shape[2] == 1:
        im = Image.fromarray(numpy.squeeze(merged_img)).convert('RGB')
    else:
        im = Image.fromarray(merged_img, mode="RGB")
112
    im.save(path)
W
wangyang59 已提交
113 114 115 116 117 118 119 120
    
def get_real_samples(batch_size, data_np):
    return data_np[numpy.random.choice(data_np.shape[0], batch_size, 
                                       replace=False),:]
    
def get_noise(batch_size, noise_dim):
    return numpy.random.normal(size=(batch_size, noise_dim)).astype('float32')

W
wangyang59 已提交
121 122 123
def get_sample_noise(batch_size, sample_dim):
    return numpy.random.normal(size=(batch_size, sample_dim),
                               scale=0.01).astype('float32')
W
wangyang59 已提交
124

W
wangyang59 已提交
125
def get_fake_samples(generator_machine, batch_size, noise):
W
wangyang59 已提交
126 127
    gen_inputs = api.Arguments.createArguments(1)
    gen_inputs.setSlotValue(0, api.Matrix.createGpuDenseFromNumpy(noise))
W
wangyang59 已提交
128 129 130 131 132 133 134 135 136 137 138
    gen_outputs = api.Arguments.createArguments(0)
    generator_machine.forward(gen_inputs, gen_outputs, api.PASS_TEST)
    fake_samples = gen_outputs.getSlotValue(0).copyToNumpyMat()
    return fake_samples

def get_training_loss(training_machine, inputs):
    outputs = api.Arguments.createArguments(0)
    training_machine.forward(inputs, outputs, api.PASS_TEST)
    loss = outputs.getSlotValue(0).copyToNumpyMat()
    return numpy.mean(loss)

W
wangyang59 已提交
139
def prepare_discriminator_data_batch_pos(batch_size, data_np, sample_noise):
W
wangyang59 已提交
140 141
    real_samples = get_real_samples(batch_size, data_np)
    labels = numpy.ones(batch_size, dtype='int32')
W
wangyang59 已提交
142
    inputs = api.Arguments.createArguments(3)
143
    inputs.setSlotValue(0, api.Matrix.createGpuDenseFromNumpy(real_samples))
W
wangyang59 已提交
144 145
    inputs.setSlotValue(1, api.Matrix.createGpuDenseFromNumpy(sample_noise))
    inputs.setSlotIds(2, api.IVector.createGpuVectorFromNumpy(labels))
W
wangyang59 已提交
146 147
    return inputs

W
wangyang59 已提交
148 149
def prepare_discriminator_data_batch_neg(generator_machine, batch_size, noise,
                                         sample_noise):
W
wangyang59 已提交
150 151 152
    fake_samples = get_fake_samples(generator_machine, batch_size, noise)
    #print fake_samples.shape
    labels = numpy.zeros(batch_size, dtype='int32')
W
wangyang59 已提交
153
    inputs = api.Arguments.createArguments(3)
154
    inputs.setSlotValue(0, api.Matrix.createGpuDenseFromNumpy(fake_samples))
W
wangyang59 已提交
155 156
    inputs.setSlotValue(1, api.Matrix.createGpuDenseFromNumpy(sample_noise))
    inputs.setSlotIds(2, api.IVector.createGpuVectorFromNumpy(labels))
W
wangyang59 已提交
157 158
    return inputs

W
wangyang59 已提交
159
def prepare_generator_data_batch(batch_size, noise, sample_noise):
W
wangyang59 已提交
160 161
    label = numpy.ones(batch_size, dtype='int32')
    #label = numpy.zeros(batch_size, dtype='int32')
W
wangyang59 已提交
162
    inputs = api.Arguments.createArguments(3)
163
    inputs.setSlotValue(0, api.Matrix.createGpuDenseFromNumpy(noise))
W
wangyang59 已提交
164 165
    inputs.setSlotValue(1, api.Matrix.createGpuDenseFromNumpy(sample_noise))
    inputs.setSlotIds(2, api.IVector.createGpuVectorFromNumpy(label))
W
wangyang59 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
    return inputs


def find(iterable, cond):
    for item in iterable:
        if cond(item):
            return item
    return None


def get_layer_size(model_conf, layer_name):
    layer_conf = find(model_conf.layers, lambda x: x.name == layer_name)
    assert layer_conf is not None, "Cannot find '%s' layer" % layer_name
    return layer_conf.size


def main():
W
wangyang59 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196
    parser = argparse.ArgumentParser()
    parser.add_argument("-d", "--dataSource", help="mnist or cifar")
    parser.add_argument("--useGpu", default="1", 
                        help="1 means use gpu for training")
    args = parser.parse_args()
    dataSource = args.dataSource
    useGpu = args.useGpu
    assert dataSource in ["mnist", "cifar"]
    assert useGpu in ["0", "1"]
            
    api.initPaddle('--use_gpu=' + useGpu, '--dot_period=10', '--log_period=100')
    gen_conf = parse_config("gan_conf_image.py", "mode=generator_training,data=" + dataSource)
    dis_conf = parse_config("gan_conf_image.py", "mode=discriminator_training,data=" + dataSource)
    generator_conf = parse_config("gan_conf_image.py", "mode=generator,data=" + dataSource)
W
wangyang59 已提交
197 198 199 200
    batch_size = dis_conf.opt_config.batch_size
    noise_dim = get_layer_size(gen_conf.model_config, "noise")
    sample_dim = get_layer_size(dis_conf.model_config, "sample")
    
W
wangyang59 已提交
201 202 203 204 205 206 207
    if dataSource == "mnist":
        data_np = load_mnist_data("./data/raw_data/train-images-idx3-ubyte")
    else:
        data_np = load_cifar_data("./data/cifar-10-batches-py/")
    
    if not os.path.exists("./%s_samples/" % dataSource):
        os.makedirs("./%s_samples/" % dataSource)
208
    
W
wangyang59 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
    # this create a gradient machine for discriminator
    dis_training_machine = api.GradientMachine.createFromConfigProto(
        dis_conf.model_config)

    gen_training_machine = api.GradientMachine.createFromConfigProto(
        gen_conf.model_config)

    # generator_machine is used to generate data only, which is used for
    # training discrinator
    logger.info(str(generator_conf.model_config))
    generator_machine = api.GradientMachine.createFromConfigProto(
        generator_conf.model_config)
    
    dis_trainer = api.Trainer.create(
        dis_conf, dis_training_machine)

    gen_trainer = api.Trainer.create(
        gen_conf, gen_training_machine)
    
    dis_trainer.startTrain()
    gen_trainer.startTrain()
    
    copy_shared_parameters(gen_training_machine, dis_training_machine)
    copy_shared_parameters(gen_training_machine, generator_machine)
    
    curr_train = "dis"
    curr_strike = 0
236
    MAX_strike = 10
W
wangyang59 已提交
237 238 239 240 241 242 243 244 245
     
    for train_pass in xrange(100):
        dis_trainer.startTrainPass()
        gen_trainer.startTrainPass()
        for i in xrange(1000):
#             data_batch_dis = prepare_discriminator_data_batch(
#                     generator_machine, batch_size, noise_dim, sample_dim)
#             dis_loss = get_training_loss(dis_training_machine, data_batch_dis)
            noise = get_noise(batch_size, noise_dim)
W
wangyang59 已提交
246
            sample_noise = get_sample_noise(batch_size, sample_dim)
W
wangyang59 已提交
247
            data_batch_dis_pos = prepare_discriminator_data_batch_pos(
W
wangyang59 已提交
248
                batch_size, data_np, sample_noise)
W
wangyang59 已提交
249
            dis_loss_pos = get_training_loss(dis_training_machine, data_batch_dis_pos)
W
wangyang59 已提交
250
            
W
wangyang59 已提交
251
            sample_noise = get_sample_noise(batch_size, sample_dim)   
W
wangyang59 已提交
252
            data_batch_dis_neg = prepare_discriminator_data_batch_neg(
W
wangyang59 已提交
253
                generator_machine, batch_size, noise, sample_noise)
W
wangyang59 已提交
254 255 256 257 258
            dis_loss_neg = get_training_loss(dis_training_machine, data_batch_dis_neg)            
                         
            dis_loss = (dis_loss_pos + dis_loss_neg) / 2.0
             
            data_batch_gen = prepare_generator_data_batch(
W
wangyang59 已提交
259
                    batch_size, noise, sample_noise)
W
wangyang59 已提交
260 261 262 263 264 265
            gen_loss = get_training_loss(gen_training_machine, data_batch_gen)
             
            if i % 100 == 0:
                print "d_pos_loss is %s     d_neg_loss is %s" % (dis_loss_pos, dis_loss_neg) 
                print "d_loss is %s    g_loss is %s" % (dis_loss, gen_loss)
                             
W
wangyang59 已提交
266
            if (not (curr_train == "dis" and curr_strike == MAX_strike)) and ((curr_train == "gen" and curr_strike == MAX_strike) or dis_loss_neg > gen_loss):
W
wangyang59 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
                if curr_train == "dis":
                    curr_strike += 1
                else:
                    curr_train = "dis"
                    curr_strike = 1                
                dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_neg)
                dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_pos)
#                 dis_loss = numpy.mean(dis_trainer.getForwardOutput()[0]["value"])
#                 print "getForwardOutput loss is %s" % dis_loss                
                copy_shared_parameters(dis_training_machine, gen_training_machine)
 
            else:
                if curr_train == "gen":
                    curr_strike += 1
                else:
                    curr_train = "gen"
                    curr_strike = 1
                gen_trainer.trainOneDataBatch(batch_size, data_batch_gen)    
                copy_shared_parameters(gen_training_machine, dis_training_machine)
                copy_shared_parameters(gen_training_machine, generator_machine)
 
        dis_trainer.finishTrainPass()
        gen_trainer.finishTrainPass()
        
        
        fake_samples = get_fake_samples(generator_machine, batch_size, noise)
W
wangyang59 已提交
293
        saveImages(fake_samples, "./%s_samples/train_pass%s.png" % (dataSource, train_pass))
W
wangyang59 已提交
294 295 296 297 298
    dis_trainer.finishTrain()
    gen_trainer.finishTrain()

if __name__ == '__main__':
    main()