gan_trainer_image.py 9.7 KB
Newer Older
W
wangyang59 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import itertools
import random
import numpy
import sys,os
from PIL import Image

from paddle.trainer.config_parser import parse_config
from paddle.trainer.config_parser import logger
import py_paddle.swig_paddle as api
from py_paddle import DataProviderConverter

import matplotlib.pyplot as plt


def plot2DScatter(data, outputfile):
    # Generate some test data
    x = data[:, 0]
    y = data[:, 1]
    print "The mean vector is %s" % numpy.mean(data, 0)
    print "The std vector is %s" % numpy.std(data, 0)

    heatmap, xedges, yedges = numpy.histogram2d(x, y, bins=50)
    extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]]

    plt.clf()
    plt.scatter(x, y)
    # plt.show()
    plt.savefig(outputfile, bbox_inches='tight')

def CHECK_EQ(a, b):
    assert a == b, "a=%s, b=%s" % (a, b)


def copy_shared_parameters(src, dst):
    src_params = [src.getParameter(i)
               for i in xrange(src.getParameterSize())]
    src_params = dict([(p.getName(), p) for p in src_params])


    for i in xrange(dst.getParameterSize()):
        dst_param = dst.getParameter(i)
        src_param = src_params.get(dst_param.getName(), None)
        if src_param is None:
            continue
        src_value = src_param.getBuf(api.PARAMETER_VALUE)
        dst_value = dst_param.getBuf(api.PARAMETER_VALUE)
        CHECK_EQ(len(src_value), len(dst_value))
        dst_value.copyFrom(src_value)
        dst_param.setValueUpdated()
        
def print_parameters(src):
    src_params = [src.getParameter(i)
               for i in xrange(src.getParameterSize())]

    print "***************"
    for p in src_params:
        print "Name is %s" % p.getName()
        print "value is %s \n" % p.getBuf(api.PARAMETER_VALUE).copyToNumpyArray()

def load_mnist_data(imageFile):
    f = open(imageFile, "rb")
    f.read(16)

    # Define number of samples for train/test
    if "train" in imageFile:
        #n = 60000
        n = 60000
    else:
        n = 10000
    
    data = numpy.zeros((n, 28*28), dtype = "float32")
    
    for i in range(n):
        pixels = []
        for j in range(28 * 28):
            pixels.append(float(ord(f.read(1))) / 255.0)
        data[i, :] = pixels

    f.close()
    return data

def saveImages(images, path):
    for i in xrange(10):
        im = Image.fromarray(images[i, :].reshape((28, 28)) * 255.0).convert('RGB')
        im.save(path + "/image_" + str(i) + ".png")
    
def get_real_samples(batch_size, data_np):
    return data_np[numpy.random.choice(data_np.shape[0], batch_size, 
                                       replace=False),:]
    
def get_noise(batch_size, noise_dim):
    return numpy.random.normal(size=(batch_size, noise_dim)).astype('float32')

def get_fake_samples(generator_machine, batch_size, noise):
    gen_inputs = prepare_generator_data_batch(batch_size, noise)
    gen_inputs.resize(1)
    gen_outputs = api.Arguments.createArguments(0)
    generator_machine.forward(gen_inputs, gen_outputs, api.PASS_TEST)
    fake_samples = gen_outputs.getSlotValue(0).copyToNumpyMat()
    return fake_samples

def get_training_loss(training_machine, inputs):
    outputs = api.Arguments.createArguments(0)
    training_machine.forward(inputs, outputs, api.PASS_TEST)
    loss = outputs.getSlotValue(0).copyToNumpyMat()
    return numpy.mean(loss)

def prepare_discriminator_data_batch_pos(batch_size, data_np):
    real_samples = get_real_samples(batch_size, data_np)
    labels = numpy.ones(batch_size, dtype='int32')
    inputs = api.Arguments.createArguments(2)
    inputs.setSlotValue(0, api.Matrix.createCpuDenseFromNumpy(real_samples))
    inputs.setSlotIds(1, api.IVector.createCpuVectorFromNumpy(labels))
    return inputs

def prepare_discriminator_data_batch_neg(generator_machine, batch_size, noise):
    fake_samples = get_fake_samples(generator_machine, batch_size, noise)
    #print fake_samples.shape
    labels = numpy.zeros(batch_size, dtype='int32')
    inputs = api.Arguments.createArguments(2)
    inputs.setSlotValue(0, api.Matrix.createCpuDenseFromNumpy(fake_samples))
    inputs.setSlotIds(1, api.IVector.createCpuVectorFromNumpy(labels))
    return inputs

def prepare_generator_data_batch(batch_size, noise):
    label = numpy.ones(batch_size, dtype='int32')
    #label = numpy.zeros(batch_size, dtype='int32')
    inputs = api.Arguments.createArguments(2)
    inputs.setSlotValue(0, api.Matrix.createCpuDenseFromNumpy(noise))
    inputs.setSlotIds(1, api.IVector.createCpuVectorFromNumpy(label))
    return inputs


def find(iterable, cond):
    for item in iterable:
        if cond(item):
            return item
    return None


def get_layer_size(model_conf, layer_name):
    layer_conf = find(model_conf.layers, lambda x: x.name == layer_name)
    assert layer_conf is not None, "Cannot find '%s' layer" % layer_name
    return layer_conf.size


def main():
    api.initPaddle('--use_gpu=0', '--dot_period=10', '--log_period=100')
    gen_conf = parse_config("gan_conf_image.py", "mode=generator_training")
    dis_conf = parse_config("gan_conf_image.py", "mode=discriminator_training")
    generator_conf = parse_config("gan_conf_image.py", "mode=generator")
    batch_size = dis_conf.opt_config.batch_size
    noise_dim = get_layer_size(gen_conf.model_config, "noise")
    sample_dim = get_layer_size(dis_conf.model_config, "sample")
    
    data_np = load_mnist_data("./data/raw_data/train-images-idx3-ubyte")

    # this create a gradient machine for discriminator
    dis_training_machine = api.GradientMachine.createFromConfigProto(
        dis_conf.model_config)

    gen_training_machine = api.GradientMachine.createFromConfigProto(
        gen_conf.model_config)

    # generator_machine is used to generate data only, which is used for
    # training discrinator
    logger.info(str(generator_conf.model_config))
    generator_machine = api.GradientMachine.createFromConfigProto(
        generator_conf.model_config)
    
    dis_trainer = api.Trainer.create(
        dis_conf, dis_training_machine)

    gen_trainer = api.Trainer.create(
        gen_conf, gen_training_machine)
    
    dis_trainer.startTrain()
    gen_trainer.startTrain()
    
    copy_shared_parameters(gen_training_machine, dis_training_machine)
    copy_shared_parameters(gen_training_machine, generator_machine)
    
    curr_train = "dis"
    curr_strike = 0
    MAX_strike = 100
     
    for train_pass in xrange(100):
        dis_trainer.startTrainPass()
        gen_trainer.startTrainPass()
        for i in xrange(1000):
#             data_batch_dis = prepare_discriminator_data_batch(
#                     generator_machine, batch_size, noise_dim, sample_dim)
#             dis_loss = get_training_loss(dis_training_machine, data_batch_dis)
            noise = get_noise(batch_size, noise_dim)
            data_batch_dis_pos = prepare_discriminator_data_batch_pos(
                batch_size, data_np)
            dis_loss_pos = get_training_loss(dis_training_machine, data_batch_dis_pos)
                        
            data_batch_dis_neg = prepare_discriminator_data_batch_neg(
                generator_machine, batch_size, noise)
            dis_loss_neg = get_training_loss(dis_training_machine, data_batch_dis_neg)            
                         
            dis_loss = (dis_loss_pos + dis_loss_neg) / 2.0
             
            data_batch_gen = prepare_generator_data_batch(
                    batch_size, noise)
            gen_loss = get_training_loss(gen_training_machine, data_batch_gen)
             
            if i % 100 == 0:
                print "d_pos_loss is %s     d_neg_loss is %s" % (dis_loss_pos, dis_loss_neg) 
                print "d_loss is %s    g_loss is %s" % (dis_loss, gen_loss)
                             
            if (not (curr_train == "dis" and curr_strike == MAX_strike)) and ((curr_train == "gen" and curr_strike == MAX_strike) or dis_loss > gen_loss):
                if curr_train == "dis":
                    curr_strike += 1
                else:
                    curr_train = "dis"
                    curr_strike = 1                
                dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_neg)
                dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_pos)
#                 dis_loss = numpy.mean(dis_trainer.getForwardOutput()[0]["value"])
#                 print "getForwardOutput loss is %s" % dis_loss                
                copy_shared_parameters(dis_training_machine, gen_training_machine)
 
            else:
                if curr_train == "gen":
                    curr_strike += 1
                else:
                    curr_train = "gen"
                    curr_strike = 1
                gen_trainer.trainOneDataBatch(batch_size, data_batch_gen)    
                copy_shared_parameters(gen_training_machine, dis_training_machine)
                copy_shared_parameters(gen_training_machine, generator_machine)
 
        dis_trainer.finishTrainPass()
        gen_trainer.finishTrainPass()
        
        
        fake_samples = get_fake_samples(generator_machine, batch_size, noise)
        save_dir = "./pass_" + str(train_pass)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        saveImages(fake_samples, save_dir)
    dis_trainer.finishTrain()
    gen_trainer.finishTrain()

if __name__ == '__main__':
    main()