gan_conf_image.py 8.7 KB
Newer Older
W
wangyang59 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *

mode = get_config_arg("mode", str, "generator")
W
wangyang59 已提交
17
dataSource = get_config_arg("data", str, "mnist")
W
wangyang59 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31
assert mode in set(["generator",
                    "discriminator",
                    "generator_training",
                    "discriminator_training"])

is_generator_training = mode == "generator_training"
is_discriminator_training = mode == "discriminator_training"
is_generator = mode == "generator"
is_discriminator = mode == "discriminator"

print('mode=%s' % mode)
noise_dim = 100
gf_dim = 64
df_dim = 64
W
wangyang59 已提交
32 33 34 35 36 37
if dataSource == "mnist":
    sample_dim = 28 # image dim
    c_dim = 1 # image color
else:
    sample_dim = 32
    c_dim = 3
W
wangyang59 已提交
38 39 40 41
s2, s4 = int(sample_dim/2), int(sample_dim/4), 
s8, s16 = int(sample_dim/8), int(sample_dim/16)

settings(
W
wangyang59 已提交
42 43 44
    batch_size=128,
    learning_rate=2e-4,
    learning_method=AdamOptimizer(beta1=0.5)
W
wangyang59 已提交
45 46 47
)

def conv_bn(input, channels, imgSize, num_filters, output_x, stride, name, 
48 49
                 param_attr, bias_attr, param_attr_bn, bn, trans=False, 
                 act=ReluActivation()):
W
wangyang59 已提交
50 51 52 53 54 55 56 57 58 59 60
    tmp =  imgSize - (output_x - 1) * stride
    if tmp <= 1 or tmp > 5:
        raise ValueError("conv input-output dimension does not fit")
    elif tmp <= 3:
        filter_size = tmp + 2
        padding = 1
    else:
        filter_size = tmp
        padding = 0

    print (imgSize, output_x, stride, filter_size, padding)
61 62 63 64 65 66
    
    if trans:
        nameApx = "_conv"
    else:
        nameApx = "_convt"
    
W
wangyang59 已提交
67 68 69
    if bn:
        conv = img_conv_layer(input, filter_size=filter_size, 
                   num_filters=num_filters,
70
                   name=name + nameApx, num_channels=channels,
W
wangyang59 已提交
71 72 73
                   act=LinearActivation(), groups=1, stride=stride, 
                   padding=padding, bias_attr=bias_attr,
                   param_attr=param_attr, shared_biases=True, layer_attr=None,
74 75
                   filter_size_y=None, stride_y=None, padding_y=None, 
                   trans=trans)
W
wangyang59 已提交
76 77
        
        conv_bn = batch_norm_layer(conv, 
78 79
                         act=act, 
                         name=name + nameApx + "_bn", 
W
wangyang59 已提交
80 81 82 83 84 85 86 87
                         bias_attr=bias_attr, 
                         param_attr=param_attr_bn,
                         use_global_stats=False)
        
        return conv_bn
    else:
        conv = img_conv_layer(input, filter_size=filter_size, 
                   num_filters=num_filters,
88 89
                   name=name + nameApx, num_channels=channels,
                   act=act, groups=1, stride=stride, 
W
wangyang59 已提交
90 91
                   padding=padding, bias_attr=bias_attr,
                   param_attr=param_attr, shared_biases=True, layer_attr=None,
92 93
                   filter_size_y=None, stride_y=None, padding_y=None,
                   trans=trans)
W
wangyang59 已提交
94 95 96 97 98 99
        return conv
    
def generator(noise):
    """
    generator generates a sample given noise
    """
100 101 102
    param_attr = ParamAttr(is_static=is_discriminator_training,
                           initial_mean=0.0,
                           initial_std=0.02)
W
wangyang59 已提交
103
    bias_attr = ParamAttr(is_static=is_discriminator_training,
104 105
                           initial_mean=0.0,
                           initial_std=0.0)
W
wangyang59 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    
    param_attr_bn=ParamAttr(is_static=is_discriminator_training,
                           initial_mean=1.0,
                           initial_std=0.02)
    
    h1 = fc_layer(input=noise,
                    name="gen_layer_h1",
                    size=s8 * s8 * gf_dim * 4,
                    bias_attr=bias_attr,
                    param_attr=param_attr,
                    #act=ReluActivation())
                    act=LinearActivation())
    
    h1_bn = batch_norm_layer(h1, 
                     act=ReluActivation(), 
                     name="gen_layer_h1_bn", 
                     bias_attr=bias_attr, 
                     param_attr=param_attr_bn,
                     use_global_stats=False)
    
126 127 128 129 130 131 132 133 134 135 136 137
    h2_bn = conv_bn(h1_bn, 
                    channels=gf_dim*4, 
                    output_x=s8,
                    num_filters=gf_dim*2, 
                    imgSize=s4,
                    stride=2,
                    name="gen_layer_h2", 
                    param_attr=param_attr, 
                    bias_attr=bias_attr, 
                    param_attr_bn=param_attr_bn,
                    bn=True,
                    trans=True)
W
wangyang59 已提交
138
    
139 140 141 142 143 144 145 146 147 148 149 150
    h3_bn = conv_bn(h2_bn, 
                    channels=gf_dim*2, 
                    output_x=s4,
                    num_filters=gf_dim, 
                    imgSize=s2,
                    stride=2,
                    name="gen_layer_h3", 
                    param_attr=param_attr, 
                    bias_attr=bias_attr, 
                    param_attr_bn=param_attr_bn,
                    bn=True,
                    trans=True)
W
wangyang59 已提交
151 152
     
    
153 154 155 156 157 158 159 160 161 162 163 164 165
    return conv_bn(h3_bn,
                   channels=gf_dim, 
                   output_x=s2,
                   num_filters=c_dim, 
                   imgSize=sample_dim,
                   stride=2,
                   name="gen_layer_h4", 
                   param_attr=param_attr, 
                   bias_attr=bias_attr, 
                   param_attr_bn=param_attr_bn,
                   bn=False,
                   trans=True,
                   act=TanhActivation())
W
wangyang59 已提交
166 167 168 169 170 171 172 173 174 175


def discriminator(sample):
    """
    discriminator ouputs the probablity of a sample is from generator
    or real data.
    The output has two dimenstional: dimension 0 is the probablity
    of the sample is from generator and dimension 1 is the probabblity
    of the sample is from real data.
    """
176 177 178
    param_attr = ParamAttr(is_static=is_generator_training,
                           initial_mean=0.0,
                           initial_std=0.02)
W
wangyang59 已提交
179
    bias_attr = ParamAttr(is_static=is_generator_training,
180 181
                          initial_mean=0.0,
                          initial_std=0.0)
W
wangyang59 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
    
    param_attr_bn=ParamAttr(is_static=is_generator_training,
                           initial_mean=1.0,
                           initial_std=0.02)
    
    h0 = conv_bn(sample, 
                 channels=c_dim, 
                 imgSize=sample_dim,
                 num_filters=df_dim, 
                 output_x=s2, 
                 stride=2, 
                 name="dis_h0", 
                 param_attr=param_attr, 
                 bias_attr=bias_attr, 
                 param_attr_bn=param_attr_bn, 
                 bn=False)
    
    h1_bn = conv_bn(h0, 
                 channels=df_dim,
                 imgSize=s2,
                 num_filters=df_dim*2, 
                 output_x=s4, 
                 stride=2, 
                 name="dis_h1", 
                 param_attr=param_attr, 
                 bias_attr=bias_attr, 
                 param_attr_bn=param_attr_bn, 
                 bn=True)

    h2_bn = conv_bn(h1_bn, 
                 channels=df_dim*2,
                 imgSize=s4,
                 num_filters=df_dim*4, 
                 output_x=s8, 
                 stride=2, 
                 name="dis_h2", 
                 param_attr=param_attr, 
                 bias_attr=bias_attr, 
                 param_attr_bn=param_attr_bn, 
                 bn=True)
        
    return fc_layer(input=h2_bn, name="dis_prob", size=2,
                    bias_attr=bias_attr,
                    param_attr=param_attr,
                    act=SoftmaxActivation())



if is_generator_training:
    noise = data_layer(name="noise", size=noise_dim)
    sample = generator(noise)

if is_discriminator_training:
    sample = data_layer(name="sample", size=sample_dim * sample_dim*c_dim)

if is_generator_training or is_discriminator_training:
W
wangyang59 已提交
238 239
    sample_noise = data_layer(name="sample_noise", 
                              size=sample_dim * sample_dim * c_dim)
W
wangyang59 已提交
240
    label = data_layer(name="label", size=1)
W
wangyang59 已提交
241 242 243 244
    prob = discriminator(addto_layer([sample, sample_noise], 
                                     act=LinearActivation(), 
                                     name="add", 
                                     bias_attr=False))
W
wangyang59 已提交
245 246 247 248 249 250 251 252
    cost = cross_entropy(input=prob, label=label)
    classification_error_evaluator(input=prob, label=label, name=mode+'_error')
    outputs(cost)

    
if is_generator:
    noise = data_layer(name="noise", size=noise_dim)
    outputs(generator(noise))