gan_conf_image.py 8.4 KB
Newer Older
W
wangyang59 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
from paddle.trainer_config_helpers.activations import LinearActivation
from numpy.distutils.system_info import tmp

mode = get_config_arg("mode", str, "generator")
assert mode in set(["generator",
                    "discriminator",
                    "generator_training",
                    "discriminator_training"])

is_generator_training = mode == "generator_training"
is_discriminator_training = mode == "discriminator_training"
is_generator = mode == "generator"
is_discriminator = mode == "discriminator"

print('mode=%s' % mode)
noise_dim = 100
gf_dim = 64
df_dim = 64
sample_dim = 28 # image dim
c_dim = 1 # image color
s2, s4 = int(sample_dim/2), int(sample_dim/4), 
s8, s16 = int(sample_dim/8), int(sample_dim/16)

settings(
    batch_size=100,
    learning_rate=1e-4,
    learning_method=AdamOptimizer()
)

def conv_bn(input, channels, imgSize, num_filters, output_x, stride, name, 
45 46
                 param_attr, bias_attr, param_attr_bn, bn, trans=False, 
                 act=ReluActivation()):
W
wangyang59 已提交
47 48 49 50 51 52 53 54 55 56 57
    tmp =  imgSize - (output_x - 1) * stride
    if tmp <= 1 or tmp > 5:
        raise ValueError("conv input-output dimension does not fit")
    elif tmp <= 3:
        filter_size = tmp + 2
        padding = 1
    else:
        filter_size = tmp
        padding = 0

    print (imgSize, output_x, stride, filter_size, padding)
58 59 60 61 62 63
    
    if trans:
        nameApx = "_conv"
    else:
        nameApx = "_convt"
    
W
wangyang59 已提交
64 65 66
    if bn:
        conv = img_conv_layer(input, filter_size=filter_size, 
                   num_filters=num_filters,
67
                   name=name + nameApx, num_channels=channels,
W
wangyang59 已提交
68 69 70
                   act=LinearActivation(), groups=1, stride=stride, 
                   padding=padding, bias_attr=bias_attr,
                   param_attr=param_attr, shared_biases=True, layer_attr=None,
71 72
                   filter_size_y=None, stride_y=None, padding_y=None, 
                   trans=trans)
W
wangyang59 已提交
73 74
        
        conv_bn = batch_norm_layer(conv, 
75 76
                         act=act, 
                         name=name + nameApx + "_bn", 
W
wangyang59 已提交
77 78 79 80 81 82 83 84
                         bias_attr=bias_attr, 
                         param_attr=param_attr_bn,
                         use_global_stats=False)
        
        return conv_bn
    else:
        conv = img_conv_layer(input, filter_size=filter_size, 
                   num_filters=num_filters,
85 86
                   name=name + nameApx, num_channels=channels,
                   act=act, groups=1, stride=stride, 
W
wangyang59 已提交
87 88
                   padding=padding, bias_attr=bias_attr,
                   param_attr=param_attr, shared_biases=True, layer_attr=None,
89 90
                   filter_size_y=None, stride_y=None, padding_y=None,
                   trans=trans)
W
wangyang59 已提交
91 92 93 94 95 96
        return conv
    
def generator(noise):
    """
    generator generates a sample given noise
    """
97 98 99
    param_attr = ParamAttr(is_static=is_discriminator_training,
                           initial_mean=0.0,
                           initial_std=0.02)
W
wangyang59 已提交
100
    bias_attr = ParamAttr(is_static=is_discriminator_training,
101 102
                           initial_mean=0.0,
                           initial_std=0.0)
W
wangyang59 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    
    param_attr_bn=ParamAttr(is_static=is_discriminator_training,
                           initial_mean=1.0,
                           initial_std=0.02)
    
    h1 = fc_layer(input=noise,
                    name="gen_layer_h1",
                    size=s8 * s8 * gf_dim * 4,
                    bias_attr=bias_attr,
                    param_attr=param_attr,
                    #act=ReluActivation())
                    act=LinearActivation())
    
    h1_bn = batch_norm_layer(h1, 
                     act=ReluActivation(), 
                     name="gen_layer_h1_bn", 
                     bias_attr=bias_attr, 
                     param_attr=param_attr_bn,
                     use_global_stats=False)
    
123 124 125 126 127 128 129 130 131 132 133 134
    h2_bn = conv_bn(h1_bn, 
                    channels=gf_dim*4, 
                    output_x=s8,
                    num_filters=gf_dim*2, 
                    imgSize=s4,
                    stride=2,
                    name="gen_layer_h2", 
                    param_attr=param_attr, 
                    bias_attr=bias_attr, 
                    param_attr_bn=param_attr_bn,
                    bn=True,
                    trans=True)
W
wangyang59 已提交
135
    
136 137 138 139 140 141 142 143 144 145 146 147
    h3_bn = conv_bn(h2_bn, 
                    channels=gf_dim*2, 
                    output_x=s4,
                    num_filters=gf_dim, 
                    imgSize=s2,
                    stride=2,
                    name="gen_layer_h3", 
                    param_attr=param_attr, 
                    bias_attr=bias_attr, 
                    param_attr_bn=param_attr_bn,
                    bn=True,
                    trans=True)
W
wangyang59 已提交
148 149
     
    
150 151 152 153 154 155 156 157 158 159 160 161 162
    return conv_bn(h3_bn,
                   channels=gf_dim, 
                   output_x=s2,
                   num_filters=c_dim, 
                   imgSize=sample_dim,
                   stride=2,
                   name="gen_layer_h4", 
                   param_attr=param_attr, 
                   bias_attr=bias_attr, 
                   param_attr_bn=param_attr_bn,
                   bn=False,
                   trans=True,
                   act=TanhActivation())
W
wangyang59 已提交
163 164 165 166 167 168 169 170 171 172


def discriminator(sample):
    """
    discriminator ouputs the probablity of a sample is from generator
    or real data.
    The output has two dimenstional: dimension 0 is the probablity
    of the sample is from generator and dimension 1 is the probabblity
    of the sample is from real data.
    """
173 174 175
    param_attr = ParamAttr(is_static=is_generator_training,
                           initial_mean=0.0,
                           initial_std=0.02)
W
wangyang59 已提交
176
    bias_attr = ParamAttr(is_static=is_generator_training,
177 178
                          initial_mean=0.0,
                          initial_std=0.0)
W
wangyang59 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
    
    param_attr_bn=ParamAttr(is_static=is_generator_training,
                           initial_mean=1.0,
                           initial_std=0.02)
    
    h0 = conv_bn(sample, 
                 channels=c_dim, 
                 imgSize=sample_dim,
                 num_filters=df_dim, 
                 output_x=s2, 
                 stride=2, 
                 name="dis_h0", 
                 param_attr=param_attr, 
                 bias_attr=bias_attr, 
                 param_attr_bn=param_attr_bn, 
                 bn=False)
    
    h1_bn = conv_bn(h0, 
                 channels=df_dim,
                 imgSize=s2,
                 num_filters=df_dim*2, 
                 output_x=s4, 
                 stride=2, 
                 name="dis_h1", 
                 param_attr=param_attr, 
                 bias_attr=bias_attr, 
                 param_attr_bn=param_attr_bn, 
                 bn=True)

    h2_bn = conv_bn(h1_bn, 
                 channels=df_dim*2,
                 imgSize=s4,
                 num_filters=df_dim*4, 
                 output_x=s8, 
                 stride=2, 
                 name="dis_h2", 
                 param_attr=param_attr, 
                 bias_attr=bias_attr, 
                 param_attr_bn=param_attr_bn, 
                 bn=True)
        
    return fc_layer(input=h2_bn, name="dis_prob", size=2,
                    bias_attr=bias_attr,
                    param_attr=param_attr,
                    act=SoftmaxActivation())



if is_generator_training:
    noise = data_layer(name="noise", size=noise_dim)
    sample = generator(noise)

if is_discriminator_training:
    sample = data_layer(name="sample", size=sample_dim * sample_dim*c_dim)

if is_generator_training or is_discriminator_training:
    label = data_layer(name="label", size=1)
    prob = discriminator(sample)
    cost = cross_entropy(input=prob, label=label)
    classification_error_evaluator(input=prob, label=label, name=mode+'_error')
    outputs(cost)

    
if is_generator:
    noise = data_layer(name="noise", size=noise_dim)
    outputs(generator(noise))