test_where_op.py 16.0 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
G
GaoWei8 已提交
17
import paddle
18 19
import paddle.fluid as fluid
from op_test import OpTest
20
from paddle.fluid import Program, program_guard
21
from paddle.fluid.backward import append_backward
22
from paddle.fluid.framework import _test_eager_guard
23 24 25 26


class TestWhereOp(OpTest):
    def setUp(self):
27
        self.op_type = 'where'
H
hong 已提交
28
        self.python_api = paddle.where
29 30 31 32 33
        self.init_config()
        self.inputs = {'Condition': self.cond, 'X': self.x, 'Y': self.y}
        self.outputs = {'Out': np.where(self.cond, self.x, self.y)}

    def test_check_output(self):
34
        self.check_output(check_eager=False)
35 36

    def test_check_grad(self):
37
        self.check_grad(['X', 'Y'], 'Out', check_eager=False)
38 39

    def init_config(self):
40 41 42
        self.x = np.random.uniform((-3), 5, 100).astype('float64')
        self.y = np.random.uniform((-3), 5, 100).astype('float64')
        self.cond = np.zeros(100).astype('bool')
43 44 45 46


class TestWhereOp2(TestWhereOp):
    def init_config(self):
47 48 49
        self.x = np.random.uniform((-5), 5, (60, 2)).astype('float64')
        self.y = np.random.uniform((-5), 5, (60, 2)).astype('float64')
        self.cond = np.ones((60, 2)).astype('bool')
50 51 52 53


class TestWhereOp3(TestWhereOp):
    def init_config(self):
54 55
        self.x = np.random.uniform((-3), 5, (20, 2, 4)).astype('float64')
        self.y = np.random.uniform((-3), 5, (20, 2, 4)).astype('float64')
56 57 58 59
        self.cond = np.array(np.random.randint(2, size=(20, 2, 4)), dtype=bool)


class TestWhereAPI(unittest.TestCase):
G
GaoWei8 已提交
60 61
    def setUp(self):
        self.init_data()
62

G
GaoWei8 已提交
63 64 65
    def init_data(self):
        self.shape = [10, 15]
        self.cond = np.array(np.random.randint(2, size=self.shape), dtype=bool)
66 67
        self.x = np.random.uniform((-2), 3, self.shape).astype(np.float32)
        self.y = np.random.uniform((-2), 3, self.shape).astype(np.float32)
G
GaoWei8 已提交
68
        self.out = np.where(self.cond, self.x, self.y)
69

G
GaoWei8 已提交
70
    def ref_x_backward(self, dout):
71
        return np.where(self.cond, dout, 0)
G
GaoWei8 已提交
72 73

    def ref_y_backward(self, dout):
74
        return np.where(~self.cond, dout, 0)
G
GaoWei8 已提交
75 76 77 78 79

    def test_api(self, use_cuda=False):
        for x_stop_gradient in [False, True]:
            for y_stop_gradient in [False, True]:
                with fluid.program_guard(Program(), Program()):
80 81 82 83 84 85 86 87 88
                    cond = fluid.layers.data(
                        name='cond', shape=self.shape, dtype='bool'
                    )
                    x = fluid.layers.data(
                        name='x', shape=self.shape, dtype='float32'
                    )
                    y = fluid.layers.data(
                        name='y', shape=self.shape, dtype='float32'
                    )
G
GaoWei8 已提交
89 90 91
                    x.stop_gradient = x_stop_gradient
                    y.stop_gradient = y_stop_gradient
                    result = paddle.where(cond, x, y)
92
                    append_backward(paddle.mean(result))
G
GaoWei8 已提交
93
                    for use_cuda in [False, True]:
94 95 96
                        if use_cuda and (
                            not fluid.core.is_compiled_with_cuda()
                        ):
G
GaoWei8 已提交
97
                            break
98 99 100
                        place = (
                            fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
                        )
G
GaoWei8 已提交
101 102
                        exe = fluid.Executor(place)
                        fetch_list = [result, result.grad_name]
103
                        if x_stop_gradient is False:
G
GaoWei8 已提交
104
                            fetch_list.append(x.grad_name)
105
                        if y_stop_gradient is False:
G
GaoWei8 已提交
106
                            fetch_list.append(y.grad_name)
107 108 109 110 111
                        out = exe.run(
                            fluid.default_main_program(),
                            feed={'cond': self.cond, 'x': self.x, 'y': self.y},
                            fetch_list=fetch_list,
                        )
G
GaoWei8 已提交
112
                        assert np.array_equal(out[0], self.out)
113 114 115 116 117
                        if x_stop_gradient is False:
                            assert np.array_equal(
                                out[2], self.ref_x_backward(out[1])
                            )
                            if y.stop_gradient is False:
G
GaoWei8 已提交
118
                                assert np.array_equal(
119 120 121 122 123 124
                                    out[3], self.ref_y_backward(out[1])
                                )
                        elif y.stop_gradient is False:
                            assert np.array_equal(
                                out[2], self.ref_y_backward(out[1])
                            )
125 126 127 128 129 130

    def test_api_broadcast(self, use_cuda=False):
        main_program = Program()
        with fluid.program_guard(main_program):
            x = fluid.layers.data(name='x', shape=[4, 1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[4, 2], dtype='float32')
131
            x_i = np.array([[0.9383, 0.1983, 3.2, 1.2]]).astype('float32')
132 133 134
            y_i = np.array([[1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0]]).astype(
                'float32'
            )
135
            result = paddle.where((x > 1), x=x, y=y)
136
            for use_cuda in [False, True]:
137
                if use_cuda and (not fluid.core.is_compiled_with_cuda()):
138
                    return
139
                place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
140
                exe = fluid.Executor(place)
141 142 143 144 145
                out = exe.run(
                    fluid.default_main_program(),
                    feed={'x': x_i, 'y': y_i},
                    fetch_list=[result],
                )
146
                assert np.array_equal(out[0], np.where((x_i > 1), x_i, y_i))
147

R
ronnywang 已提交
148 149 150 151 152
    def test_scalar(self):
        paddle.enable_static()
        main_program = Program()
        with fluid.program_guard(main_program):
            cond_shape = [2, 4]
153 154 155
            cond = fluid.layers.data(
                name='cond', shape=cond_shape, dtype='bool'
            )
R
ronnywang 已提交
156 157 158 159 160
            x_data = 1.0
            y_data = 2.0
            cond_data = np.array([False, False, True, True]).astype('bool')
            result = paddle.where(condition=cond, x=x_data, y=y_data)
            for use_cuda in [False, True]:
161
                if use_cuda and (not fluid.core.is_compiled_with_cuda()):
R
ronnywang 已提交
162
                    return
163
                place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
R
ronnywang 已提交
164
                exe = fluid.Executor(place)
165 166 167 168 169
                out = exe.run(
                    fluid.default_main_program(),
                    feed={'cond': cond_data},
                    fetch_list=[result],
                )
R
ronnywang 已提交
170 171 172
                expect = np.where(cond_data, x_data, y_data)
                assert np.array_equal(out[0], expect)

173 174 175 176
    def __test_where_with_broadcast_static(self, cond_shape, x_shape, y_shape):
        paddle.enable_static()
        main_program = Program()
        with fluid.program_guard(main_program):
177 178 179
            cond = fluid.layers.data(
                name='cond', shape=cond_shape, dtype='bool'
            )
180 181
            x = fluid.layers.data(name='x', shape=x_shape, dtype='float32')
            y = fluid.layers.data(name='y', shape=y_shape, dtype='float32')
182
            cond_data_tmp = np.random.random(size=cond_shape).astype('float32')
183
            cond_data = cond_data_tmp < 0.3
184 185
            x_data = np.random.random(size=x_shape).astype('float32')
            y_data = np.random.random(size=y_shape).astype('float32')
186 187
            result = paddle.where(condition=cond, x=x, y=y)
            for use_cuda in [False, True]:
188
                if use_cuda and (not fluid.core.is_compiled_with_cuda()):
189
                    return
190
                place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
191
                exe = fluid.Executor(place)
192 193 194 195 196
                out = exe.run(
                    fluid.default_main_program(),
                    feed={'cond': cond_data, 'x': x_data, 'y': y_data},
                    fetch_list=[result],
                )
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
                expect = np.where(cond_data, x_data, y_data)
                assert np.array_equal(out[0], expect)

    def test_static_api_broadcast_1(self):
        cond_shape = [2, 4]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_2(self):
        cond_shape = [2, 1]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_3(self):
        cond_shape = [2, 2, 1]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_4(self):
        cond_shape = [2, 1, 4]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_5(self):
        cond_shape = [3, 2, 2, 4]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_6(self):
        cond_shape = [2, 2, 4]
        a_shape = [2, 2, 1]
        b_shape = [2, 2, 1]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_7(self):
        cond_shape = [2, 2, 4]
        a_shape = [2, 1, 4]
        b_shape = [2, 1, 4]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_8(self):
        cond_shape = [3, 2, 2, 4]
        a_shape = [2, 2, 1]
        b_shape = [2, 2, 1]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

248 249 250 251

class TestWhereDygraphAPI(unittest.TestCase):
    def test_api(self):
        with fluid.dygraph.guard():
252 253 254
            x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype('float64')
            y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype('float64')
            cond_i = np.array([False, False, True, True]).astype('bool')
255 256 257
            x = fluid.dygraph.to_variable(x_i)
            y = fluid.dygraph.to_variable(y_i)
            cond = fluid.dygraph.to_variable(cond_i)
G
GaoWei8 已提交
258
            out = paddle.where(cond, x, y)
259 260
            assert np.array_equal(out.numpy(), np.where(cond_i, x_i, y_i))

R
ronnywang 已提交
261 262 263 264 265 266 267 268 269
    def test_scalar(self):
        with fluid.dygraph.guard():
            cond_i = np.array([False, False, True, True]).astype('bool')
            x = 1.0
            y = 2.0
            cond = fluid.dygraph.to_variable(cond_i)
            out = paddle.where(cond, x, y)
            assert np.array_equal(out.numpy(), np.where(cond_i, x, y))

270 271 272
    def __test_where_with_broadcast_dygraph(self, cond_shape, a_shape, b_shape):
        with fluid.dygraph.guard():
            cond_tmp = paddle.rand(cond_shape)
273
            cond = cond_tmp < 0.3
274 275 276 277 278
            a = paddle.rand(a_shape)
            b = paddle.rand(b_shape)
            result = paddle.where(cond, a, b)
            result = result.numpy()
            expect = np.where(cond, a, b)
279
            np.testing.assert_array_equal(expect, result)
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328

    def test_dygraph_api_broadcast_1(self):
        cond_shape = [2, 4]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_2(self):
        cond_shape = [2, 1]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_3(self):
        cond_shape = [2, 2, 1]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_4(self):
        cond_shape = [2, 1, 4]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_5(self):
        cond_shape = [3, 2, 2, 4]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_6(self):
        cond_shape = [2, 2, 4]
        a_shape = [2, 2, 1]
        b_shape = [2, 2, 1]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_7(self):
        cond_shape = [2, 2, 4]
        a_shape = [2, 1, 4]
        b_shape = [2, 1, 4]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_8(self):
        cond_shape = [3, 2, 2, 4]
        a_shape = [2, 2, 1]
        b_shape = [2, 2, 1]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

R
ronnywang 已提交
329 330 331
    def test_where_condition(self):
        data = np.array([[True, False], [False, True]])
        with program_guard(Program(), Program()):
332
            x = fluid.layers.data(name='x', shape=[(-1), 2])
R
ronnywang 已提交
333 334 335 336 337
            y = paddle.where(x)
            self.assertEqual(type(y), tuple)
            self.assertEqual(len(y), 2)
            z = fluid.layers.concat(list(y), axis=1)
            exe = fluid.Executor(fluid.CPUPlace())
338 339 340
            (res,) = exe.run(
                feed={'x': data}, fetch_list=[z.name], return_numpy=False
            )
R
ronnywang 已提交
341
        expect_out = np.array([[0, 0], [1, 1]])
342
        np.testing.assert_allclose(expect_out, np.array(res), rtol=1e-05)
R
ronnywang 已提交
343 344
        data = np.array([True, True, False])
        with program_guard(Program(), Program()):
345
            x = fluid.layers.data(name='x', shape=[(-1)])
R
ronnywang 已提交
346 347 348 349 350
            y = paddle.where(x)
            self.assertEqual(type(y), tuple)
            self.assertEqual(len(y), 1)
            z = fluid.layers.concat(list(y), axis=1)
            exe = fluid.Executor(fluid.CPUPlace())
351 352 353
            (res,) = exe.run(
                feed={'x': data}, fetch_list=[z.name], return_numpy=False
            )
R
ronnywang 已提交
354
        expect_out = np.array([[0], [1]])
355
        np.testing.assert_allclose(expect_out, np.array(res), rtol=1e-05)
R
ronnywang 已提交
356

357 358 359 360 361 362 363 364 365 366 367 368
    def test_eager(self):
        with _test_eager_guard():
            self.test_api()
            self.test_dygraph_api_broadcast_1()
            self.test_dygraph_api_broadcast_2()
            self.test_dygraph_api_broadcast_3()
            self.test_dygraph_api_broadcast_4()
            self.test_dygraph_api_broadcast_5()
            self.test_dygraph_api_broadcast_6()
            self.test_dygraph_api_broadcast_7()
            self.test_dygraph_api_broadcast_8()

369 370 371 372

class TestWhereOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
373 374 375
            x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype('float64')
            y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype('float64')
            cond_i = np.array([False, False, True, True]).astype('bool')
376 377

            def test_Variable():
G
GaoWei8 已提交
378
                paddle.where(cond_i, x_i, y_i)
379 380 381 382 383 384 385

            self.assertRaises(TypeError, test_Variable)

            def test_type():
                x = fluid.layers.data(name='x', shape=[4], dtype='bool')
                y = fluid.layers.data(name='y', shape=[4], dtype='float16')
                cond = fluid.layers.data(name='cond', shape=[4], dtype='int32')
G
GaoWei8 已提交
386
                paddle.where(cond, x, y)
387 388 389

            self.assertRaises(TypeError, test_type)

R
ronnywang 已提交
390 391 392 393
    def test_value_error(self):
        with fluid.dygraph.guard():
            cond_shape = [2, 2, 4]
            cond_tmp = paddle.rand(cond_shape)
394
            cond = cond_tmp < 0.3
R
ronnywang 已提交
395 396 397
            a = paddle.rand(cond_shape)
            self.assertRaises(ValueError, paddle.where, cond, a)

398 399 400 401
    def test_eager(self):
        with _test_eager_guard():
            self.test_value_error()

402

H
hong 已提交
403 404
if __name__ == "__main__":
    paddle.enable_static()
405
    unittest.main()