Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
ff0ab756
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ff0ab756
编写于
4月 13, 2020
作者:
G
GaoWei8
提交者:
GitHub
4月 13, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
polish tensor.where codes and english document (#23687)
上级
52979565
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
91 addition
and
84 deletion
+91
-84
paddle/fluid/operators/where_op.cc
paddle/fluid/operators/where_op.cc
+1
-1
paddle/fluid/operators/where_op.cu
paddle/fluid/operators/where_op.cu
+0
-7
python/paddle/fluid/tests/unittests/test_where_op.py
python/paddle/fluid/tests/unittests/test_where_op.py
+47
-42
python/paddle/tensor/search.py
python/paddle/tensor/search.py
+43
-34
未找到文件。
paddle/fluid/operators/where_op.cc
浏览文件 @
ff0ab756
...
...
@@ -102,7 +102,7 @@ class WhereOpMaker : public framework::OpProtoAndCheckerMaker {
"(Tensor), The second input tensor of where op. When the "
"corresponding position of condition is false, the output takes "
"the element of Y."
);
AddOutput
(
"Out"
,
"(Tensor), The output tensor of
mul
op."
);
AddOutput
(
"Out"
,
"(Tensor), The output tensor of
where
op."
);
AddComment
(
R"DOC(
Where Operator.
Return a tensor of elements selected from either $X$ or $Y$, depending on condition.
...
...
paddle/fluid/operators/where_op.cu
浏览文件 @
ff0ab756
...
...
@@ -48,9 +48,6 @@ class WhereKernel<platform::CUDADeviceContext, T>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
PADDLE_ENFORCE_EQ
(
platform
::
is_gpu_place
(
context
.
GetPlace
()),
true
,
platform
::
errors
::
PermissionDenied
(
"It must use CUDAPlace."
));
auto
*
condition
=
context
.
Input
<
framework
::
Tensor
>
(
"Condition"
);
auto
*
X
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
Y
=
context
.
Input
<
framework
::
Tensor
>
(
"Y"
);
...
...
@@ -78,10 +75,6 @@ class WhereGradKernel<platform::CUDADeviceContext, T>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
PADDLE_ENFORCE_EQ
(
platform
::
is_gpu_place
(
context
.
GetPlace
()),
true
,
platform
::
errors
::
PermissionDenied
(
"It must use CUDAPlace."
));
auto
*
condition
=
context
.
Input
<
framework
::
Tensor
>
(
"Condition"
);
const
bool
*
cond_data
=
condition
->
data
<
bool
>
();
auto
numel
=
condition
->
numel
();
...
...
python/paddle/fluid/tests/unittests/test_where_op.py
浏览文件 @
ff0ab756
...
...
@@ -68,45 +68,53 @@ class TestWhereAPI(unittest.TestCase):
x_i
=
np
.
array
([
0.9383
,
0.1983
,
3.2
,
1.2
]).
astype
(
"float32"
)
y_i
=
np
.
array
([
1.0
,
1.0
,
1.0
,
1.0
]).
astype
(
"float32"
)
cond_i
=
np
.
array
([
False
,
False
,
True
,
True
]).
astype
(
"bool"
)
result
=
tensor
.
where
(
x
>
1
,
X
=
x
,
Y
=
y
)
result
=
tensor
.
where
(
x
>
1
,
x
=
x
,
y
=
y
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
'x'
:
x_i
,
'y'
:
y_i
},
fetch_list
=
[
result
])
assert
np
.
array_equal
(
out
[
0
],
np
.
where
(
cond_i
,
x_i
,
y_i
))
for
use_cuda
in
[
False
,
True
]:
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
'x'
:
x_i
,
'y'
:
y_i
},
fetch_list
=
[
result
])
assert
np
.
array_equal
(
out
[
0
],
np
.
where
(
cond_i
,
x_i
,
y_i
))
def
test_grad
(
self
,
use_cuda
=
False
):
main_program
=
Program
()
for
x_stop_gradient
,
y_stop_gradient
in
[[
False
,
False
],
[
True
,
False
],
[
False
,
True
]]:
with
fluid
.
program_guard
(
main_program
):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
4
],
dtype
=
'float32'
)
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
4
],
dtype
=
'float32'
)
with
fluid
.
program_guard
(
main_program
):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
4
],
dtype
=
'float32'
)
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
4
],
dtype
=
'float32'
)
for
x_stop_gradient
,
y_stop_gradient
in
[[
False
,
False
],
[
True
,
False
],
[
False
,
True
]]:
x
.
stop_gradient
=
x_stop_gradient
y
.
stop_gradient
=
y_stop_gradient
x_i
=
np
.
array
([
0.9383
,
0.1983
,
3.2
,
1.2
]).
astype
(
"float32"
)
y_i
=
np
.
array
([
1.0
,
1.0
,
1.0
,
1.0
]).
astype
(
"float32"
)
cond_i
=
np
.
array
([
False
,
False
,
True
,
True
]).
astype
(
"bool"
)
result
=
tensor
.
where
(
x
>
1
,
X
=
x
,
Y
=
y
)
result
=
tensor
.
where
(
x
>
1
,
x
=
x
,
y
=
y
)
x_mean
=
layers
.
mean
(
x
)
append_backward
(
x_mean
)
y_mean
=
layers
.
mean
(
y
)
append_backward
(
y_mean
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
'x'
:
x_i
,
'y'
:
y_i
},
fetch_list
=
[
result
,
x
.
grad_name
,
y
.
grad_name
])
x_grad
=
[
0.25
]
*
4
y_grad
=
[
0.25
]
*
4
assert
np
.
array_equal
(
out
[
0
],
np
.
where
(
cond_i
,
x_i
,
y_i
))
assert
np
.
array_equal
(
out
[
1
],
x_grad
)
assert
np
.
array_equal
(
out
[
2
],
y_grad
)
for
use_cuda
in
[
False
,
True
]:
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
'x'
:
x_i
,
'y'
:
y_i
},
fetch_list
=
[
result
,
x
.
grad_name
,
y
.
grad_name
])
x_grad
=
[
0.25
]
*
4
y_grad
=
[
0.25
]
*
4
assert
np
.
array_equal
(
out
[
0
],
np
.
where
(
cond_i
,
x_i
,
y_i
))
assert
np
.
array_equal
(
out
[
1
],
x_grad
)
assert
np
.
array_equal
(
out
[
2
],
y_grad
)
def
test_api_broadcast
(
self
,
use_cuda
=
False
):
main_program
=
Program
()
...
...
@@ -114,25 +122,22 @@ class TestWhereAPI(unittest.TestCase):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
4
,
1
],
dtype
=
'float32'
)
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
4
,
2
],
dtype
=
'float32'
)
x_i
=
np
.
array
([[
0.9383
,
0.1983
,
3.2
,
1.2
]]).
astype
(
"float32"
)
y_i
=
np
.
array
(
[[
1.0
,
1.0
,
1.0
,
1.0
],
[
1.0
,
1.0
,
1.0
,
1.0
]]).
astype
(
"float32"
)
y_i
=
np
.
array
(
[[
1.0
,
1.0
,
1.0
,
1.0
],
[
1.0
,
1.0
,
1.0
,
1.0
]]).
astype
(
"float32"
)
cond_i
=
np
.
array
([[
False
,
False
,
True
,
True
],
[
False
,
False
,
True
,
True
]]).
astype
(
"bool"
)
result
=
tensor
.
where
(
x
>
1
,
X
=
x
,
Y
=
y
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
'x'
:
x_i
,
'y'
:
y_i
},
fetch_list
=
[
result
])
assert
np
.
array_equal
(
out
[
0
],
np
.
where
(
cond_i
,
x_i
,
y_i
))
def
test_fw_bw
(
self
):
if
core
.
is_compiled_with_cuda
():
self
.
test_api
(
use_cuda
=
True
)
self
.
test_api_broadcast
(
use_cuda
=
True
)
self
.
test_grad
(
use_cuda
=
True
)
result
=
tensor
.
where
(
x
>
1
,
x
=
x
,
y
=
y
)
for
use_cuda
in
[
False
,
True
]:
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
'x'
:
x_i
,
'y'
:
y_i
},
fetch_list
=
[
result
])
assert
np
.
array_equal
(
out
[
0
],
np
.
where
(
cond_i
,
x_i
,
y_i
))
class
TestWhereDygraphAPI
(
unittest
.
TestCase
):
...
...
python/paddle/tensor/search.py
浏览文件 @
ff0ab756
...
...
@@ -13,17 +13,8 @@
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
warnings
import
six
import
os
import
inspect
from
..fluid.layer_helper
import
LayerHelper
from
..fluid.data_feeder
import
check_variable_and_dtype
,
check_type
,
check_dtype
from
..fluid.initializer
import
Normal
,
Constant
,
NumpyArrayInitializer
from
..fluid.framework
import
Variable
,
OpProtoHolder
,
in_dygraph_mode
,
dygraph_only
,
_dygraph_tracer
,
default_main_program
from
..fluid
import
dygraph_utils
from
..fluid.param_attr
import
ParamAttr
from
..fluid
import
unique_name
from
..fluid
import
core
,
layers
# TODO: define searching & indexing functions of a tensor
...
...
@@ -224,43 +215,61 @@ def sort(input, axis=-1, descending=False, out=None, name=None):
return
out
,
ids
def
where
(
Condition
,
X
,
Y
):
def
where
(
condition
,
x
,
y
,
name
=
None
):
"""
Return a tensor of elements selected from either $X$ or $Y$, depending on $Condition$.
Return a tensor of elements selected from either $x$ or $y$, depending on $condition$.
.. math::
out_i =
\\
begin{cases}
x_i, \quad
\\
text{if}
\\
condition_i
\\
is
\\
True
\\\\
y_i, \quad
\\
text{if}
\\
condition_i
\\
is
\\
False
\\\\
\\
end{cases}
Args:
Condition(Variable): A bool tensor with rank at least 1, the data type is bool.
X(Variable): X is a Tensor Variable.
Y(Variable): Y is a Tensor Variable.
condition(Variable): The condition to choose x or y.
x(Variable): x is a Tensor Variable with data type float32, float64, int32, int64.
y(Variable): y is a Tensor Variable with data type float32, float64, int32, int64.
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
Returns:
out : The tensor.
Variable: A Tensor with the same data dype as x.
Examples:
.. code-block:: python
import numpy as np
import paddle as paddle
import paddle.fluid as fluid
import paddle.tensor as paddle
x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype("float32")
y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype("float32")
with fluid.dygraph.guard():
x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype("float64")
y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype("float64")
x = fluid.dygraph.to_variable(x_i)
y = fluid.dygraph.to_variable(y_i)
out = paddle.where(x>1, x, y)
print(out.numpy())
#out: [1.0, 1.0, 3.2, 1.2]
print(out.numpy())
#out: [1.0, 1.0, 3.2, 1.2]
"""
if
not
in_dygraph_mode
():
check_variable_and_dtype
(
Condition
,
'C
ondition'
,
[
'bool'
],
'where'
)
check_variable_and_dtype
(
condition
,
'c
ondition'
,
[
'bool'
],
'where'
)
check_variable_and_dtype
(
X
,
'X
'
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'where'
)
x
,
'x
'
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'where'
)
check_variable_and_dtype
(
Y
,
'Y
'
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'where'
)
y
,
'y
'
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'where'
)
X_shape
=
list
(
X
.
shape
)
Y_shape
=
list
(
Y
.
shape
)
if
X_shape
==
Y
_shape
:
x_shape
=
list
(
x
.
shape
)
y_shape
=
list
(
y
.
shape
)
if
x_shape
==
y
_shape
:
if
in_dygraph_mode
():
return
core
.
ops
.
where
(
Condition
,
X
,
Y
)
return
core
.
ops
.
where
(
condition
,
x
,
y
)
else
:
helper
=
LayerHelper
(
"where"
,
**
locals
())
dtype
=
helper
.
input_dtype
()
...
...
@@ -268,16 +277,16 @@ def where(Condition, X, Y):
helper
.
append_op
(
type
=
'where'
,
inputs
=
{
'Condition'
:
C
ondition
,
'X'
:
X
,
'Y'
:
Y
},
inputs
=
{
'Condition'
:
c
ondition
,
'X'
:
x
,
'Y'
:
y
},
outputs
=
{
'Out'
:
[
out
]})
return
out
else
:
cond_int
=
layers
.
cast
(
Condition
,
X
.
dtype
)
cond_not_int
=
layers
.
cast
(
layers
.
logical_not
(
Condition
),
X
.
dtype
)
out1
=
layers
.
elementwise_mul
(
X
,
cond_int
)
out2
=
layers
.
elementwise_mul
(
Y
,
cond_not_int
)
cond_int
=
layers
.
cast
(
condition
,
x
.
dtype
)
cond_not_int
=
layers
.
cast
(
layers
.
logical_not
(
condition
),
x
.
dtype
)
out1
=
layers
.
elementwise_mul
(
x
,
cond_int
)
out2
=
layers
.
elementwise_mul
(
y
,
cond_not_int
)
out
=
layers
.
elementwise_add
(
out1
,
out2
)
return
out
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录