test_random_seed.py 17.6 KB
Newer Older
Y
yaoxuefeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test cloud role maker."""

import unittest
import paddle.fluid.generator as generator

import paddle.fluid as fluid
import numpy as np
import paddle
import paddle.fluid.core as core


class TestGeneratorSeed(unittest.TestCase):
L
Leo Chen 已提交
26 27 28
    #     """
    #     Test cases for cpu generator seed.
    #     """
Y
yaoxuefeng 已提交
29 30 31 32 33 34

    def test_generator_uniform_random_dygraph(self):
        """Test Generator seed."""

        fluid.enable_dygraph()

C
cnn 已提交
35
        gen = paddle.seed(12312321111)
Y
yaoxuefeng 已提交
36
        x = fluid.layers.uniform_random([10], dtype="float32", min=0.0, max=1.0)
L
Leo Chen 已提交
37

Y
yaoxuefeng 已提交
38
        st1 = gen.get_state()
39 40 41
        x1 = fluid.layers.uniform_random(
            [10], dtype="float32", min=0.0, max=1.0
        )
L
Leo Chen 已提交
42

Y
yaoxuefeng 已提交
43
        gen.set_state(st1)
L
Leo Chen 已提交
44
        print(gen.get_state())
45 46 47
        x2 = fluid.layers.uniform_random(
            [10], dtype="float32", min=0.0, max=1.0
        )
L
Leo Chen 已提交
48

C
cnn 已提交
49
        paddle.seed(12312321111)
50 51 52
        x3 = fluid.layers.uniform_random(
            [10], dtype="float32", min=0.0, max=1.0
        )
L
Leo Chen 已提交
53

Y
yaoxuefeng 已提交
54 55 56 57 58 59
        x_np = x.numpy()
        x1_np = x1.numpy()
        x2_np = x2.numpy()
        x3_np = x3.numpy()

        if not core.is_compiled_with_cuda():
60 61
            np.testing.assert_allclose(x1_np, x2_np, rtol=1e-05)
            np.testing.assert_allclose(x_np, x3_np, rtol=1e-05)
Y
yaoxuefeng 已提交
62 63 64 65

    def test_generator_uniform_random_static(self):
        fluid.disable_dygraph()

C
cnn 已提交
66
        gen = paddle.seed(123123143)
Y
yaoxuefeng 已提交
67 68 69 70 71 72 73 74 75 76 77

        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            result_1 = fluid.layers.uniform_random(shape=[3, 4])
            result_2 = fluid.layers.uniform_random(shape=[3, 4])

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(startup_program)
78 79 80 81
            out1 = exe.run(
                train_program, feed={}, fetch_list=[result_1, result_2]
            )
            # gen.set_state(cur_state)
Y
yaoxuefeng 已提交
82
            gen.manual_seed(123123143)
83 84 85
            out2 = exe.run(
                train_program, feed={}, fetch_list=[result_1, result_2]
            )
Y
yaoxuefeng 已提交
86 87 88 89 90 91 92

            out1_res1 = np.array(out1[0])
            out1_res2 = np.array(out1[1])
            out2_res1 = np.array(out2[0])
            out2_res2 = np.array(out2[1])

            if not core.is_compiled_with_cuda():
93 94
                np.testing.assert_allclose(out1_res1, out2_res1, rtol=1e-05)
                np.testing.assert_allclose(out1_res2, out2_res2, rtol=1e-05)
Y
yaoxuefeng 已提交
95 96
                self.assertTrue(not np.allclose(out1_res2, out1_res1))

97 98 99
    def test_gen_dropout_dygraph(self):
        fluid.enable_dygraph()

C
cnn 已提交
100
        gen = paddle.seed(111111111)
101 102
        st = gen.get_state()
        # x = np.arange(1,101).reshape(2,50).astype("float32")
103 104 105
        x = fluid.layers.uniform_random(
            [2, 10], dtype="float32", min=0.0, max=1.0
        )
106 107
        y = fluid.layers.dropout(x, 0.5)
        gen.manual_seed(111111111)
108 109 110 111
        # gen.set_state(st)
        x1 = fluid.layers.uniform_random(
            [2, 10], dtype="float32", min=0.0, max=1.0
        )
112 113 114
        y1 = fluid.layers.dropout(x1, 0.5)
        y_np = y.numpy()
        y1_np = y1.numpy()
L
Leo Chen 已提交
115

116 117
        if not core.is_compiled_with_cuda():
            print(">>>>>>> dropout dygraph >>>>>>>")
118
            np.testing.assert_allclose(y_np, y1_np, rtol=1e-05)
119 120 121 122

    def test_gen_dropout_static(self):
        fluid.disable_dygraph()

C
cnn 已提交
123
        gen = paddle.seed(123123143)
124 125 126 127 128 129 130 131 132 133 134

        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            x_1 = fluid.layers.uniform_random(shape=[2, 10])
            y_1 = fluid.layers.dropout(x_1, 0.5)
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(startup_program)
            out1 = exe.run(train_program, feed={}, fetch_list=[y_1])
135
            # gen.set_state(cur_state)
136 137 138 139
            gen.manual_seed(123123143)
            out2 = exe.run(train_program, feed={}, fetch_list=[y_1])
        out1_np = np.array(out1[0])
        out2_np = np.array(out2[0])
L
Leo Chen 已提交
140

141 142
        if not core.is_compiled_with_cuda():
            print(">>>>>>> dropout static >>>>>>>")
143
            np.testing.assert_allclose(out1_np, out2_np, rtol=1e-05)
144 145 146 147 148

    def test_generator_gaussian_random_dygraph(self):
        """Test Generator seed."""
        fluid.enable_dygraph()

C
cnn 已提交
149
        gen = paddle.seed(12312321111)
150 151 152 153 154 155 156 157 158 159 160 161 162 163
        x = fluid.layers.gaussian_random([10], dtype="float32")
        st1 = gen.get_state()
        x1 = fluid.layers.gaussian_random([10], dtype="float32")
        gen.set_state(st1)
        x2 = fluid.layers.gaussian_random([10], dtype="float32")
        gen.manual_seed(12312321111)
        x3 = fluid.layers.gaussian_random([10], dtype="float32")
        x_np = x.numpy()
        x1_np = x1.numpy()
        x2_np = x2.numpy()
        x3_np = x3.numpy()

        if not core.is_compiled_with_cuda():
            print(">>>>>>> gaussian random dygraph >>>>>>>")
164 165
            np.testing.assert_allclose(x1_np, x2_np, rtol=1e-05)
            np.testing.assert_allclose(x_np, x3_np, rtol=1e-05)
166 167 168 169

    def test_generator_gaussian_random_static(self):
        fluid.disable_dygraph()

C
cnn 已提交
170
        gen = paddle.seed(123123143)
171 172 173 174 175 176 177 178 179 180 181

        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            result_1 = fluid.layers.gaussian_random(shape=[3, 4])
            result_2 = fluid.layers.gaussian_random(shape=[3, 4])

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(startup_program)
182 183 184 185
            out1 = exe.run(
                train_program, feed={}, fetch_list=[result_1, result_2]
            )
            # gen.set_state(cur_state)
186
            gen.manual_seed(123123143)
187 188 189
            out2 = exe.run(
                train_program, feed={}, fetch_list=[result_1, result_2]
            )
190 191 192 193 194 195 196 197

            out1_res1 = np.array(out1[0])
            out1_res2 = np.array(out1[1])
            out2_res1 = np.array(out2[0])
            out2_res2 = np.array(out2[1])

            if not core.is_compiled_with_cuda():
                print(">>>>>>> gaussian random static >>>>>>>")
198 199
                np.testing.assert_allclose(out1_res1, out2_res1, rtol=1e-05)
                np.testing.assert_allclose(out1_res2, out2_res2, rtol=1e-05)
200 201
                self.assertTrue(not np.allclose(out1_res2, out1_res1))

Y
yaoxuefeng 已提交
202 203 204 205 206 207
    def test_generator_randint_dygraph(self):
        """Test Generator seed."""
        gen = generator.Generator()

        fluid.enable_dygraph()

C
cnn 已提交
208
        gen = paddle.seed(12312321111)
209
        x = paddle.randint(low=10, shape=[10], dtype="int32")
Y
yaoxuefeng 已提交
210
        st1 = gen.get_state()
211
        x1 = paddle.randint(low=10, shape=[10], dtype="int32")
Y
yaoxuefeng 已提交
212
        gen.set_state(st1)
213
        x2 = paddle.randint(low=10, shape=[10], dtype="int32")
Y
yaoxuefeng 已提交
214
        gen.manual_seed(12312321111)
215
        x3 = paddle.randint(low=10, shape=[10], dtype="int32")
Y
yaoxuefeng 已提交
216 217 218 219
        x_np = x.numpy()
        x1_np = x1.numpy()
        x2_np = x2.numpy()
        x3_np = x3.numpy()
220

Y
yaoxuefeng 已提交
221
        if not core.is_compiled_with_cuda():
222
            print(">>>>>>> randint dygraph >>>>>>>")
223 224
            np.testing.assert_allclose(x1_np, x2_np, rtol=1e-05)
            np.testing.assert_allclose(x_np, x3_np, rtol=1e-05)
Y
yaoxuefeng 已提交
225

Z
zhangchunle 已提交
226
    def test_generator_uniform_random_static_1(self):
L
Leo Chen 已提交
227 228
        fluid.disable_dygraph()

C
cnn 已提交
229
        gen = paddle.seed(123123143)
L
Leo Chen 已提交
230 231 232 233 234 235 236 237 238 239 240

        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            result_1 = fluid.layers.uniform_random(shape=[3, 4])
            result_2 = fluid.layers.uniform_random(shape=[3, 4])

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(startup_program)
241 242 243 244
            out1 = exe.run(
                train_program, feed={}, fetch_list=[result_1, result_2]
            )
            # gen.set_state(cur_state)
L
Leo Chen 已提交
245
            gen.manual_seed(123123143)
246 247 248
            out2 = exe.run(
                train_program, feed={}, fetch_list=[result_1, result_2]
            )
249

L
Leo Chen 已提交
250 251 252 253 254 255
            out1_res1 = np.array(out1[0])
            out1_res2 = np.array(out1[1])
            out2_res1 = np.array(out2[0])
            out2_res2 = np.array(out2[1])

            if not core.is_compiled_with_cuda():
256 257
                np.testing.assert_allclose(out1_res1, out2_res1, rtol=1e-05)
                np.testing.assert_allclose(out1_res2, out2_res2, rtol=1e-05)
L
Leo Chen 已提交
258 259
                self.assertTrue(not np.allclose(out1_res2, out1_res1))

Z
zhangchunle 已提交
260
    def test_generator_randint_dygraph_1(self):
L
Leo Chen 已提交
261 262 263
        """Test Generator seed."""
        fluid.enable_dygraph()

C
cnn 已提交
264
        gen = paddle.seed(12312321111)
L
Leo Chen 已提交
265 266 267 268 269 270 271 272 273 274 275 276
        x = paddle.randint(low=1)
        st1 = gen.get_state()
        x1 = paddle.randint(low=1)
        gen.set_state(st1)
        x2 = paddle.randint(low=1)
        gen.manual_seed(12312321111)
        x3 = paddle.randint(low=1)
        x_np = x.numpy()
        x1_np = x1.numpy()
        x2_np = x2.numpy()
        x3_np = x3.numpy()
        if not core.is_compiled_with_cuda():
277 278
            np.testing.assert_allclose(x1_np, x2_np, rtol=1e-05)
            np.testing.assert_allclose(x_np, x3_np, rtol=1e-05)
L
Leo Chen 已提交
279 280

    def test_generator_ranint_static(self):
281 282
        fluid.disable_dygraph()

C
cnn 已提交
283
        gen = paddle.seed(123123143)
284 285 286 287 288 289 290 291 292 293 294

        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            result_1 = paddle.randint(low=10, shape=[3, 4])
            result_2 = paddle.randint(low=10, shape=[3, 4])

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(startup_program)
295 296 297 298
            out1 = exe.run(
                train_program, feed={}, fetch_list=[result_1, result_2]
            )
            # gen.set_state(cur_state)
299
            gen.manual_seed(123123143)
300 301 302
            out2 = exe.run(
                train_program, feed={}, fetch_list=[result_1, result_2]
            )
303 304 305 306 307 308 309 310

            out1_res1 = np.array(out1[0])
            out1_res2 = np.array(out1[1])
            out2_res1 = np.array(out2[0])
            out2_res2 = np.array(out2[1])

            if not core.is_compiled_with_cuda():
                print(">>>>>>> randint static >>>>>>>")
311 312
                np.testing.assert_allclose(out1_res1, out2_res1, rtol=1e-05)
                np.testing.assert_allclose(out1_res2, out2_res2, rtol=1e-05)
313 314 315 316 317 318 319
                self.assertTrue(not np.allclose(out1_res2, out1_res1))

    def test_generator_randperm_dygraph(self):
        """Test Generator seed."""

        fluid.enable_dygraph()

C
cnn 已提交
320
        gen = paddle.seed(12312321111)
321 322 323 324 325 326 327 328 329 330 331 332 333 334
        x = paddle.randperm(10)
        st1 = gen.get_state()
        x1 = paddle.randperm(10)
        gen.set_state(st1)
        x2 = paddle.randperm(10)
        gen.manual_seed(12312321111)
        x3 = paddle.randperm(10)
        x_np = x.numpy()
        x1_np = x1.numpy()
        x2_np = x2.numpy()
        x3_np = x3.numpy()

        if not core.is_compiled_with_cuda():
            print(">>>>>>> randperm dygraph >>>>>>>")
335 336
            np.testing.assert_allclose(x1_np, x2_np, rtol=1e-05)
            np.testing.assert_allclose(x_np, x3_np, rtol=1e-05)
337 338 339 340 341

    def test_generator_randperm_static(self):

        fluid.disable_dygraph()

C
cnn 已提交
342
        paddle.seed(123123143)
343 344 345 346 347 348 349 350 351 352 353

        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            result_1 = paddle.randperm(10)
            result_2 = paddle.randperm(10)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(startup_program)
354 355 356
            out1 = exe.run(
                train_program, feed={}, fetch_list=[result_1, result_2]
            )
L
Leo Chen 已提交
357

C
cnn 已提交
358
            paddle.seed(123123143)
359 360 361
            out2 = exe.run(
                train_program, feed={}, fetch_list=[result_1, result_2]
            )
362 363 364 365 366 367 368 369

            out1_res1 = np.array(out1[0])
            out1_res2 = np.array(out1[1])
            out2_res1 = np.array(out2[0])
            out2_res2 = np.array(out2[1])

            if not core.is_compiled_with_cuda():
                print(">>>>>>> randperm static >>>>>>>")
370 371
                np.testing.assert_allclose(out1_res1, out2_res1, rtol=1e-05)
                np.testing.assert_allclose(out1_res2, out2_res2, rtol=1e-05)
372 373 374 375
                self.assertTrue(not np.allclose(out1_res2, out1_res1))

    def test_generator_sampling_id_dygraph(self):
        """Test Generator seed."""
C
cnn 已提交
376
        gen = paddle.seed(12312321111)
377 378 379 380

        fluid.enable_dygraph()

        gen.manual_seed(12312321111)
381 382 383
        x = fluid.layers.uniform_random(
            [10, 10], dtype="float32", min=0.0, max=1.0
        )
384
        y = fluid.layers.sampling_id(x)
L
Leo Chen 已提交
385

386
        st1 = gen.get_state()
387 388 389
        x1 = fluid.layers.uniform_random(
            [10, 10], dtype="float32", min=0.0, max=1.0
        )
390
        y1 = fluid.layers.sampling_id(x)
L
Leo Chen 已提交
391

392
        gen.set_state(st1)
393 394 395
        x2 = fluid.layers.uniform_random(
            [10, 10], dtype="float32", min=0.0, max=1.0
        )
396
        y2 = fluid.layers.sampling_id(x)
L
Leo Chen 已提交
397

398
        gen.manual_seed(12312321111)
399 400 401
        x3 = fluid.layers.uniform_random(
            [10, 10], dtype="float32", min=0.0, max=1.0
        )
402 403 404 405 406 407 408 409 410
        y3 = fluid.layers.sampling_id(x)

        x_np = y.numpy()
        x1_np = y1.numpy()
        x2_np = y2.numpy()
        x3_np = y3.numpy()

        if not core.is_compiled_with_cuda():
            print(">>>>>>> sampling id dygraph >>>>>>>")
411 412
            np.testing.assert_allclose(x1_np, x2_np, rtol=1e-05)
            np.testing.assert_allclose(x_np, x3_np, rtol=1e-05)
413

Z
zhangchunle 已提交
414
    def test_generator_randperm_static_1(self):
415 416 417

        fluid.disable_dygraph()

C
cnn 已提交
418
        paddle.seed(123123143)
419 420 421 422 423 424 425 426 427 428 429 430

        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            x = fluid.layers.uniform_random(shape=[10, 10])
            result_1 = fluid.layers.sampling_id(x)
            result_2 = fluid.layers.sampling_id(x)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(startup_program)
431 432 433
            out1 = exe.run(
                train_program, feed={}, fetch_list=[result_1, result_2]
            )
L
Leo Chen 已提交
434

C
cnn 已提交
435
            paddle.seed(123123143)
436 437 438
            out2 = exe.run(
                train_program, feed={}, fetch_list=[result_1, result_2]
            )
439 440 441 442 443 444 445 446

            out1_res1 = np.array(out1[0])
            out1_res2 = np.array(out1[1])
            out2_res1 = np.array(out2[0])
            out2_res2 = np.array(out2[1])

            if not core.is_compiled_with_cuda():
                print(">>>>>>> sampling id static >>>>>>>")
447 448
                np.testing.assert_allclose(out1_res1, out2_res1, rtol=1e-05)
                np.testing.assert_allclose(out1_res2, out2_res2, rtol=1e-05)
449 450 451 452 453
                self.assertTrue(not np.allclose(out1_res2, out1_res1))

    def test_gen_TruncatedNormal_initializer(self):
        fluid.disable_dygraph()

C
cnn 已提交
454
        gen = paddle.seed(123123143)
455 456 457 458 459 460 461 462 463 464 465
        cur_state = gen.get_state()

        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            x = fluid.layers.uniform_random(shape=[2, 10])
            result_1 = fluid.layers.fc(
                input=x,
                size=10,
466 467 468 469
                param_attr=fluid.initializer.TruncatedNormal(
                    loc=0.0, scale=2.0
                ),
            )
470 471 472
            result_2 = fluid.layers.fc(
                input=x,
                size=10,
473 474 475 476
                param_attr=fluid.initializer.TruncatedNormal(
                    loc=0.0, scale=2.0
                ),
            )
477 478 479

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(startup_program)
480 481 482
            out1 = exe.run(
                train_program, feed={}, fetch_list=[result_1, result_2]
            )
483 484 485 486

        gen.manual_seed(123123143)
        with fluid.program_guard(train_program, startup_program):
            exe.run(startup_program)
487 488 489
            out2 = exe.run(
                train_program, feed={}, fetch_list=[result_1, result_2]
            )
490 491 492 493 494 495 496 497

        out1_res1 = np.array(out1[0])
        out1_res2 = np.array(out1[1])
        out2_res1 = np.array(out2[0])
        out2_res2 = np.array(out2[1])

        if not core.is_compiled_with_cuda():
            print(">>>>>>> sampling id static >>>>>>>")
498 499
            np.testing.assert_allclose(out1_res1, out2_res1, rtol=1e-05)
            np.testing.assert_allclose(out1_res2, out2_res2, rtol=1e-05)
500 501
            self.assertTrue(not np.allclose(out1_res2, out1_res1))

Y
yaoxuefeng 已提交
502 503 504

if __name__ == "__main__":
    unittest.main()