test_random_seed.py 18.6 KB
Newer Older
Y
yaoxuefeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test cloud role maker."""

from __future__ import print_function
import os
import unittest
import paddle.fluid.generator as generator

import time  # temp for debug
import paddle.fluid as fluid
import numpy as np
import paddle
import paddle.fluid.core as core


class TestGeneratorSeed(unittest.TestCase):
L
Leo Chen 已提交
29 30 31
    #     """
    #     Test cases for cpu generator seed.
    #     """
Y
yaoxuefeng 已提交
32 33 34 35 36 37

    def test_generator_uniform_random_dygraph(self):
        """Test Generator seed."""

        fluid.enable_dygraph()

C
cnn 已提交
38
        gen = paddle.seed(12312321111)
Y
yaoxuefeng 已提交
39
        x = fluid.layers.uniform_random([10], dtype="float32", min=0.0, max=1.0)
L
Leo Chen 已提交
40

Y
yaoxuefeng 已提交
41
        st1 = gen.get_state()
42 43 44 45
        x1 = fluid.layers.uniform_random([10],
                                         dtype="float32",
                                         min=0.0,
                                         max=1.0)
L
Leo Chen 已提交
46

Y
yaoxuefeng 已提交
47
        gen.set_state(st1)
L
Leo Chen 已提交
48
        print(gen.get_state())
49 50 51 52
        x2 = fluid.layers.uniform_random([10],
                                         dtype="float32",
                                         min=0.0,
                                         max=1.0)
L
Leo Chen 已提交
53

C
cnn 已提交
54
        paddle.seed(12312321111)
55 56 57 58
        x3 = fluid.layers.uniform_random([10],
                                         dtype="float32",
                                         min=0.0,
                                         max=1.0)
L
Leo Chen 已提交
59

Y
yaoxuefeng 已提交
60 61 62 63 64 65 66 67 68 69 70 71
        x_np = x.numpy()
        x1_np = x1.numpy()
        x2_np = x2.numpy()
        x3_np = x3.numpy()

        if not core.is_compiled_with_cuda():
            self.assertTrue(np.allclose(x1_np, x2_np))
            self.assertTrue(np.allclose(x_np, x3_np))

    def test_generator_uniform_random_static(self):
        fluid.disable_dygraph()

C
cnn 已提交
72
        gen = paddle.seed(123123143)
Y
yaoxuefeng 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            result_1 = fluid.layers.uniform_random(shape=[3, 4])
            result_2 = fluid.layers.uniform_random(shape=[3, 4])

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(startup_program)
            out1 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])
            #gen.set_state(cur_state)
            gen.manual_seed(123123143)
            out2 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])

            out1_res1 = np.array(out1[0])
            out1_res2 = np.array(out1[1])
            out2_res1 = np.array(out2[0])
            out2_res2 = np.array(out2[1])

            if not core.is_compiled_with_cuda():
                self.assertTrue(np.allclose(out1_res1, out2_res1))
                self.assertTrue(np.allclose(out1_res2, out2_res2))
                self.assertTrue(not np.allclose(out1_res2, out1_res1))

103 104 105
    def test_gen_dropout_dygraph(self):
        fluid.enable_dygraph()

C
cnn 已提交
106
        gen = paddle.seed(111111111)
107 108
        st = gen.get_state()
        # x = np.arange(1,101).reshape(2,50).astype("float32")
109 110 111 112
        x = fluid.layers.uniform_random([2, 10],
                                        dtype="float32",
                                        min=0.0,
                                        max=1.0)
113 114 115
        y = fluid.layers.dropout(x, 0.5)
        gen.manual_seed(111111111)
        #gen.set_state(st)
116 117 118 119
        x1 = fluid.layers.uniform_random([2, 10],
                                         dtype="float32",
                                         min=0.0,
                                         max=1.0)
120 121 122
        y1 = fluid.layers.dropout(x1, 0.5)
        y_np = y.numpy()
        y1_np = y1.numpy()
L
Leo Chen 已提交
123

124 125 126 127 128 129 130
        if not core.is_compiled_with_cuda():
            print(">>>>>>> dropout dygraph >>>>>>>")
            self.assertTrue(np.allclose(y_np, y1_np))

    def test_gen_dropout_static(self):
        fluid.disable_dygraph()

C
cnn 已提交
131
        gen = paddle.seed(123123143)
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            x_1 = fluid.layers.uniform_random(shape=[2, 10])
            y_1 = fluid.layers.dropout(x_1, 0.5)
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(startup_program)
            out1 = exe.run(train_program, feed={}, fetch_list=[y_1])
            #gen.set_state(cur_state)
            gen.manual_seed(123123143)
            out2 = exe.run(train_program, feed={}, fetch_list=[y_1])
        out1_np = np.array(out1[0])
        out2_np = np.array(out2[0])
L
Leo Chen 已提交
148

149 150 151 152 153 154 155 156
        if not core.is_compiled_with_cuda():
            print(">>>>>>> dropout static >>>>>>>")
            self.assertTrue(np.allclose(out1_np, out2_np))

    def test_generator_gaussian_random_dygraph(self):
        """Test Generator seed."""
        fluid.enable_dygraph()

C
cnn 已提交
157
        gen = paddle.seed(12312321111)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
        x = fluid.layers.gaussian_random([10], dtype="float32")
        st1 = gen.get_state()
        x1 = fluid.layers.gaussian_random([10], dtype="float32")
        gen.set_state(st1)
        x2 = fluid.layers.gaussian_random([10], dtype="float32")
        gen.manual_seed(12312321111)
        x3 = fluid.layers.gaussian_random([10], dtype="float32")
        x_np = x.numpy()
        x1_np = x1.numpy()
        x2_np = x2.numpy()
        x3_np = x3.numpy()

        if not core.is_compiled_with_cuda():
            print(">>>>>>> gaussian random dygraph >>>>>>>")
            self.assertTrue(np.allclose(x1_np, x2_np))
            self.assertTrue(np.allclose(x_np, x3_np))

    def test_generator_gaussian_random_static(self):
        fluid.disable_dygraph()

C
cnn 已提交
178
        gen = paddle.seed(123123143)
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            result_1 = fluid.layers.gaussian_random(shape=[3, 4])
            result_2 = fluid.layers.gaussian_random(shape=[3, 4])

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(startup_program)
            out1 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])
            #gen.set_state(cur_state)
            gen.manual_seed(123123143)
            out2 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])

            out1_res1 = np.array(out1[0])
            out1_res2 = np.array(out1[1])
            out2_res1 = np.array(out2[0])
            out2_res2 = np.array(out2[1])

            if not core.is_compiled_with_cuda():
                print(">>>>>>> gaussian random static >>>>>>>")
                self.assertTrue(np.allclose(out1_res1, out2_res1))
                self.assertTrue(np.allclose(out1_res2, out2_res2))
                self.assertTrue(not np.allclose(out1_res2, out1_res1))

Y
yaoxuefeng 已提交
210 211 212 213 214 215
    def test_generator_randint_dygraph(self):
        """Test Generator seed."""
        gen = generator.Generator()

        fluid.enable_dygraph()

C
cnn 已提交
216
        gen = paddle.seed(12312321111)
217
        x = paddle.randint(low=10, shape=[10], dtype="int32")
Y
yaoxuefeng 已提交
218
        st1 = gen.get_state()
219
        x1 = paddle.randint(low=10, shape=[10], dtype="int32")
Y
yaoxuefeng 已提交
220
        gen.set_state(st1)
221
        x2 = paddle.randint(low=10, shape=[10], dtype="int32")
Y
yaoxuefeng 已提交
222
        gen.manual_seed(12312321111)
223
        x3 = paddle.randint(low=10, shape=[10], dtype="int32")
Y
yaoxuefeng 已提交
224 225 226 227
        x_np = x.numpy()
        x1_np = x1.numpy()
        x2_np = x2.numpy()
        x3_np = x3.numpy()
228

Y
yaoxuefeng 已提交
229
        if not core.is_compiled_with_cuda():
230
            print(">>>>>>> randint dygraph >>>>>>>")
Y
yaoxuefeng 已提交
231 232 233
            self.assertTrue(np.allclose(x1_np, x2_np))
            self.assertTrue(np.allclose(x_np, x3_np))

Z
zhangchunle 已提交
234
    def test_generator_uniform_random_static_1(self):
L
Leo Chen 已提交
235 236
        fluid.disable_dygraph()

C
cnn 已提交
237
        gen = paddle.seed(123123143)
L
Leo Chen 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            result_1 = fluid.layers.uniform_random(shape=[3, 4])
            result_2 = fluid.layers.uniform_random(shape=[3, 4])

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(startup_program)
            out1 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])
            #gen.set_state(cur_state)
            gen.manual_seed(123123143)
            out2 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])
257

L
Leo Chen 已提交
258 259 260 261 262 263 264 265 266 267
            out1_res1 = np.array(out1[0])
            out1_res2 = np.array(out1[1])
            out2_res1 = np.array(out2[0])
            out2_res2 = np.array(out2[1])

            if not core.is_compiled_with_cuda():
                self.assertTrue(np.allclose(out1_res1, out2_res1))
                self.assertTrue(np.allclose(out1_res2, out2_res2))
                self.assertTrue(not np.allclose(out1_res2, out1_res1))

Z
zhangchunle 已提交
268
    def test_generator_randint_dygraph_1(self):
L
Leo Chen 已提交
269 270 271
        """Test Generator seed."""
        fluid.enable_dygraph()

C
cnn 已提交
272
        gen = paddle.seed(12312321111)
L
Leo Chen 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
        x = paddle.randint(low=1)
        st1 = gen.get_state()
        x1 = paddle.randint(low=1)
        gen.set_state(st1)
        x2 = paddle.randint(low=1)
        gen.manual_seed(12312321111)
        x3 = paddle.randint(low=1)
        x_np = x.numpy()
        x1_np = x1.numpy()
        x2_np = x2.numpy()
        x3_np = x3.numpy()
        if not core.is_compiled_with_cuda():
            self.assertTrue(np.allclose(x1_np, x2_np))
            self.assertTrue(np.allclose(x_np, x3_np))

    def test_generator_ranint_static(self):
289 290
        fluid.disable_dygraph()

C
cnn 已提交
291
        gen = paddle.seed(123123143)
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327

        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            result_1 = paddle.randint(low=10, shape=[3, 4])
            result_2 = paddle.randint(low=10, shape=[3, 4])

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(startup_program)
            out1 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])
            #gen.set_state(cur_state)
            gen.manual_seed(123123143)
            out2 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])

            out1_res1 = np.array(out1[0])
            out1_res2 = np.array(out1[1])
            out2_res1 = np.array(out2[0])
            out2_res2 = np.array(out2[1])

            if not core.is_compiled_with_cuda():
                print(">>>>>>> randint static >>>>>>>")
                self.assertTrue(np.allclose(out1_res1, out2_res1))
                self.assertTrue(np.allclose(out1_res2, out2_res2))
                self.assertTrue(not np.allclose(out1_res2, out1_res1))

    def test_generator_randperm_dygraph(self):
        """Test Generator seed."""

        fluid.enable_dygraph()

C
cnn 已提交
328
        gen = paddle.seed(12312321111)
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
        x = paddle.randperm(10)
        st1 = gen.get_state()
        x1 = paddle.randperm(10)
        gen.set_state(st1)
        x2 = paddle.randperm(10)
        gen.manual_seed(12312321111)
        x3 = paddle.randperm(10)
        x_np = x.numpy()
        x1_np = x1.numpy()
        x2_np = x2.numpy()
        x3_np = x3.numpy()

        if not core.is_compiled_with_cuda():
            print(">>>>>>> randperm dygraph >>>>>>>")
            self.assertTrue(np.allclose(x1_np, x2_np))
            self.assertTrue(np.allclose(x_np, x3_np))

    def test_generator_randperm_static(self):

        fluid.disable_dygraph()

C
cnn 已提交
350
        paddle.seed(123123143)
351 352 353 354 355 356 357 358 359 360 361 362 363 364

        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            result_1 = paddle.randperm(10)
            result_2 = paddle.randperm(10)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(startup_program)
            out1 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])
L
Leo Chen 已提交
365

C
cnn 已提交
366
            paddle.seed(123123143)
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
            out2 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])

            out1_res1 = np.array(out1[0])
            out1_res2 = np.array(out1[1])
            out2_res1 = np.array(out2[0])
            out2_res2 = np.array(out2[1])

            if not core.is_compiled_with_cuda():
                print(">>>>>>> randperm static >>>>>>>")
                self.assertTrue(np.allclose(out1_res1, out2_res1))
                self.assertTrue(np.allclose(out1_res2, out2_res2))
                self.assertTrue(not np.allclose(out1_res2, out1_res1))

    def test_generator_sampling_id_dygraph(self):
        """Test Generator seed."""
C
cnn 已提交
384
        gen = paddle.seed(12312321111)
385 386 387 388

        fluid.enable_dygraph()

        gen.manual_seed(12312321111)
389 390 391 392
        x = fluid.layers.uniform_random([10, 10],
                                        dtype="float32",
                                        min=0.0,
                                        max=1.0)
393
        y = fluid.layers.sampling_id(x)
L
Leo Chen 已提交
394

395
        st1 = gen.get_state()
396 397 398 399
        x1 = fluid.layers.uniform_random([10, 10],
                                         dtype="float32",
                                         min=0.0,
                                         max=1.0)
400
        y1 = fluid.layers.sampling_id(x)
L
Leo Chen 已提交
401

402
        gen.set_state(st1)
403 404 405 406
        x2 = fluid.layers.uniform_random([10, 10],
                                         dtype="float32",
                                         min=0.0,
                                         max=1.0)
407
        y2 = fluid.layers.sampling_id(x)
L
Leo Chen 已提交
408

409
        gen.manual_seed(12312321111)
410 411 412 413
        x3 = fluid.layers.uniform_random([10, 10],
                                         dtype="float32",
                                         min=0.0,
                                         max=1.0)
414 415 416 417 418 419 420 421 422 423 424 425
        y3 = fluid.layers.sampling_id(x)

        x_np = y.numpy()
        x1_np = y1.numpy()
        x2_np = y2.numpy()
        x3_np = y3.numpy()

        if not core.is_compiled_with_cuda():
            print(">>>>>>> sampling id dygraph >>>>>>>")
            self.assertTrue(np.allclose(x1_np, x2_np))
            self.assertTrue(np.allclose(x_np, x3_np))

Z
zhangchunle 已提交
426
    def test_generator_randperm_static_1(self):
427 428 429

        fluid.disable_dygraph()

C
cnn 已提交
430
        paddle.seed(123123143)
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445

        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            x = fluid.layers.uniform_random(shape=[10, 10])
            result_1 = fluid.layers.sampling_id(x)
            result_2 = fluid.layers.sampling_id(x)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(startup_program)
            out1 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])
L
Leo Chen 已提交
446

C
cnn 已提交
447
            paddle.seed(123123143)
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
            out2 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])

            out1_res1 = np.array(out1[0])
            out1_res2 = np.array(out1[1])
            out2_res1 = np.array(out2[0])
            out2_res2 = np.array(out2[1])

            if not core.is_compiled_with_cuda():
                print(">>>>>>> sampling id static >>>>>>>")
                self.assertTrue(np.allclose(out1_res1, out2_res1))
                self.assertTrue(np.allclose(out1_res2, out2_res2))
                self.assertTrue(not np.allclose(out1_res2, out1_res1))

    def test_gen_TruncatedNormal_initializer(self):
        fluid.disable_dygraph()

C
cnn 已提交
466
        gen = paddle.seed(123123143)
467 468 469 470 471 472 473 474 475 476 477
        cur_state = gen.get_state()

        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            x = fluid.layers.uniform_random(shape=[2, 10])
            result_1 = fluid.layers.fc(
                input=x,
                size=10,
478 479
                param_attr=fluid.initializer.TruncatedNormal(loc=0.0,
                                                             scale=2.0))
480 481 482
            result_2 = fluid.layers.fc(
                input=x,
                size=10,
483 484
                param_attr=fluid.initializer.TruncatedNormal(loc=0.0,
                                                             scale=2.0))
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(startup_program)
            out1 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])

        gen.manual_seed(123123143)
        with fluid.program_guard(train_program, startup_program):
            exe.run(startup_program)
            out2 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])

        out1_res1 = np.array(out1[0])
        out1_res2 = np.array(out1[1])
        out2_res1 = np.array(out2[0])
        out2_res2 = np.array(out2[1])

        if not core.is_compiled_with_cuda():
            print(">>>>>>> sampling id static >>>>>>>")
            self.assertTrue(np.allclose(out1_res1, out2_res1))
            self.assertTrue(np.allclose(out1_res2, out2_res2))
            self.assertTrue(not np.allclose(out1_res2, out1_res1))

Y
yaoxuefeng 已提交
510 511 512

if __name__ == "__main__":
    unittest.main()