test_mse_loss.py 13.1 KB
Newer Older
R
ruri 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
17
import paddle
R
ruri 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30
import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.fluid.executor import Executor


class TestMseLoss(unittest.TestCase):
    def test_mse_loss(self):
        input_val = np.random.uniform(0.1, 0.5, (2, 3)).astype("float32")
        label_val = np.random.uniform(0.1, 0.5, (2, 3)).astype("float32")

        sub = input_val - label_val
        np_result = np.mean(sub * sub)

31 32
        input_var = fluid.data(name="input", shape=[-1, 3], dtype="float32")
        label_var = fluid.data(name="label", shape=[-1, 3], dtype="float32")
R
ruri 已提交
33

34
        output = paddle.nn.functional.mse_loss(input=input_var, label=label_var)
35 36 37
        for use_cuda in (
            [False, True] if core.is_compiled_with_cuda() else [False]
        ):
R
ruri 已提交
38 39
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = Executor(place)
40 41 42 43 44
            (result,) = exe.run(
                fluid.default_main_program(),
                feed={"input": input_val, "label": label_val},
                fetch_list=[output],
            )
R
ruri 已提交
45

46
            np.testing.assert_allclose(np_result, result, rtol=1e-05)
R
ruri 已提交
47 48


49 50 51 52
class TestMseInvalidInput(unittest.TestCase):
    def test_error(self):
        def test_invalid_input():
            input = [256, 3]
53
            label = fluid.data(name='label1', shape=[None, 3], dtype='float32')
54
            loss = paddle.nn.functional.mse_loss(input, label)
55 56 57 58 59 60

        self.assertRaises(TypeError, test_invalid_input)

        def test_invalid_label():
            input = fluid.data(name='input1', shape=[None, 3], dtype='float32')
            label = [256, 3]
61
            loss = paddle.nn.functional.mse_loss(input, label)
62 63 64 65

        self.assertRaises(TypeError, test_invalid_label)


66 67 68 69 70
class TestNNMseLoss(unittest.TestCase):
    def test_NNMseLoss_mean(self):
        for dim in [[10, 10], [2, 10, 10], [3, 3, 10, 10]]:
            input_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
            label_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
71
            paddle.enable_static()
72 73
            prog = fluid.Program()
            startup_prog = fluid.Program()
74 75 76 77 78
            place = (
                fluid.CUDAPlace(0)
                if fluid.core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
79
            with fluid.program_guard(prog, startup_prog):
80 81 82 83 84 85
                input = fluid.layers.data(
                    name='input', shape=dim, dtype='float32'
                )
                label = fluid.layers.data(
                    name='label', shape=dim, dtype='float32'
                )
86 87 88 89
                mse_loss = paddle.nn.loss.MSELoss()
                ret = mse_loss(input, label)

                exe = fluid.Executor(place)
90 91 92 93 94
                (static_result,) = exe.run(
                    prog,
                    feed={"input": input_np, "label": label_np},
                    fetch_list=[ret],
                )
95 96 97

            with fluid.dygraph.guard():
                mse_loss = paddle.nn.loss.MSELoss()
98 99 100 101
                dy_ret = mse_loss(
                    fluid.dygraph.to_variable(input_np),
                    fluid.dygraph.to_variable(label_np),
                )
102 103 104 105
                dy_result = dy_ret.numpy()

            sub = input_np - label_np
            expected = np.mean(sub * sub)
106 107 108
            np.testing.assert_allclose(static_result, expected, rtol=1e-05)
            np.testing.assert_allclose(static_result, dy_result, rtol=1e-05)
            np.testing.assert_allclose(dy_result, expected, rtol=1e-05)
109 110 111 112 113 114
            self.assertTrue(dy_result.shape, [1])

    def test_NNMseLoss_sum(self):
        for dim in [[10, 10], [2, 10, 10], [3, 3, 10, 10]]:
            input_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
            label_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
115
            paddle.enable_static()
116 117
            prog = fluid.Program()
            startup_prog = fluid.Program()
118 119 120 121 122
            place = (
                fluid.CUDAPlace(0)
                if fluid.core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
123
            with fluid.program_guard(prog, startup_prog):
124 125 126 127 128 129
                input = fluid.layers.data(
                    name='input', shape=dim, dtype='float32'
                )
                label = fluid.layers.data(
                    name='label', shape=dim, dtype='float32'
                )
130 131 132 133
                mse_loss = paddle.nn.loss.MSELoss(reduction='sum')
                ret = mse_loss(input, label)

                exe = fluid.Executor(place)
134 135 136 137 138
                (static_result,) = exe.run(
                    prog,
                    feed={"input": input_np, "label": label_np},
                    fetch_list=[ret],
                )
139 140 141

            with fluid.dygraph.guard():
                mse_loss = paddle.nn.loss.MSELoss(reduction='sum')
142 143 144 145
                dy_ret = mse_loss(
                    fluid.dygraph.to_variable(input_np),
                    fluid.dygraph.to_variable(label_np),
                )
146 147 148 149
                dy_result = dy_ret.numpy()

            sub = input_np - label_np
            expected = np.sum(sub * sub)
150 151 152
            np.testing.assert_allclose(static_result, expected, rtol=1e-05)
            np.testing.assert_allclose(static_result, dy_result, rtol=1e-05)
            np.testing.assert_allclose(dy_result, expected, rtol=1e-05)
153 154 155 156 157 158
            self.assertTrue(dy_result.shape, [1])

    def test_NNMseLoss_none(self):
        for dim in [[10, 10], [2, 10, 10], [3, 3, 10, 10]]:
            input_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
            label_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
159
            paddle.enable_static()
160 161
            prog = fluid.Program()
            startup_prog = fluid.Program()
162 163 164 165 166
            place = (
                fluid.CUDAPlace(0)
                if fluid.core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
167
            with fluid.program_guard(prog, startup_prog):
168 169 170 171 172 173
                input = fluid.layers.data(
                    name='input', shape=dim, dtype='float32'
                )
                label = fluid.layers.data(
                    name='label', shape=dim, dtype='float32'
                )
174 175 176 177
                mse_loss = paddle.nn.loss.MSELoss(reduction='none')
                ret = mse_loss(input, label)

                exe = fluid.Executor(place)
178 179 180 181 182
                (static_result,) = exe.run(
                    prog,
                    feed={"input": input_np, "label": label_np},
                    fetch_list=[ret],
                )
183 184 185

            with fluid.dygraph.guard():
                mse_loss = paddle.nn.loss.MSELoss(reduction='none')
186 187 188 189
                dy_ret = mse_loss(
                    fluid.dygraph.to_variable(input_np),
                    fluid.dygraph.to_variable(label_np),
                )
190 191 192
                dy_result = dy_ret.numpy()

            sub = input_np - label_np
193
            expected = sub * sub
194 195 196
            np.testing.assert_allclose(static_result, expected, rtol=1e-05)
            np.testing.assert_allclose(static_result, dy_result, rtol=1e-05)
            np.testing.assert_allclose(dy_result, expected, rtol=1e-05)
197 198 199
            self.assertTrue(dy_result.shape, [1])


200 201 202 203 204 205 206 207
class TestNNFunctionalMseLoss(unittest.TestCase):
    def test_NNFunctionalMseLoss_mean(self):
        for dim in [[10, 10], [2, 10, 10], [3, 3, 10, 10]]:
            input_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
            target_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
            paddle.enable_static()
            prog = paddle.static.Program()
            startup_prog = paddle.static.Program()
208 209 210 211 212
            place = (
                paddle.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else paddle.CPUPlace()
            )
213
            with paddle.static.program_guard(prog, startup_prog):
214 215 216 217 218 219
                input = paddle.fluid.data(
                    name='input', shape=dim, dtype='float32'
                )
                target = paddle.fluid.data(
                    name='target', shape=dim, dtype='float32'
                )
220 221 222 223
                mse_loss = paddle.nn.functional.mse_loss(input, target, 'mean')

            exe = paddle.static.Executor(place)
            exe.run(startup_prog)
224 225 226 227 228
            (static_result,) = exe.run(
                prog,
                feed={"input": input_np, "target": target_np},
                fetch_list=[mse_loss],
            )
229 230

            paddle.disable_static()
231 232 233
            dy_ret = paddle.nn.functional.mse_loss(
                paddle.to_tensor(input_np), paddle.to_tensor(target_np), 'mean'
            )
234 235 236 237
            dy_result = dy_ret.numpy()

            sub = input_np - target_np
            expected = np.mean(sub * sub)
238 239 240
            np.testing.assert_allclose(static_result, expected, rtol=1e-05)
            np.testing.assert_allclose(static_result, dy_result, rtol=1e-05)
            np.testing.assert_allclose(dy_result, expected, rtol=1e-05)
241 242 243 244 245 246 247 248 249
            self.assertTrue(dy_result.shape, [1])

    def test_NNFunctionalMseLoss_sum(self):
        for dim in [[10, 10], [2, 10, 10], [3, 3, 10, 10]]:
            input_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
            target_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
            paddle.enable_static()
            prog = paddle.static.Program()
            startup_prog = paddle.static.Program()
250 251 252 253 254
            place = (
                paddle.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else paddle.CPUPlace()
            )
255
            with paddle.static.program_guard(prog, startup_prog):
256 257 258 259 260 261
                input = paddle.fluid.data(
                    name='input', shape=dim, dtype='float32'
                )
                target = paddle.fluid.data(
                    name='target', shape=dim, dtype='float32'
                )
262 263 264 265
                mse_loss = paddle.nn.functional.mse_loss(input, target, 'sum')

                exe = paddle.static.Executor(place)
                exe.run(startup_prog)
266 267 268 269 270
                (static_result,) = exe.run(
                    prog,
                    feed={"input": input_np, "target": target_np},
                    fetch_list=[mse_loss],
                )
271 272

            paddle.disable_static()
273 274 275
            dy_ret = paddle.nn.functional.mse_loss(
                paddle.to_tensor(input_np), paddle.to_tensor(target_np), 'sum'
            )
276 277 278 279
            dy_result = dy_ret.numpy()

            sub = input_np - target_np
            expected = np.sum(sub * sub)
280 281 282
            np.testing.assert_allclose(static_result, expected, rtol=1e-05)
            np.testing.assert_allclose(static_result, dy_result, rtol=1e-05)
            np.testing.assert_allclose(dy_result, expected, rtol=1e-05)
283 284 285 286 287 288 289 290 291
            self.assertTrue(dy_result.shape, [1])

    def test_NNFunctionalMseLoss_none(self):
        for dim in [[10, 10], [2, 10, 10], [3, 3, 10, 10]]:
            input_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
            target_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
            paddle.enable_static()
            prog = paddle.static.Program()
            startup_prog = paddle.static.Program()
292 293 294 295 296
            place = (
                paddle.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else paddle.CPUPlace()
            )
297
            with paddle.static.program_guard(prog, startup_prog):
298 299 300 301 302 303
                input = paddle.fluid.data(
                    name='input', shape=dim, dtype='float32'
                )
                target = paddle.fluid.data(
                    name='target', shape=dim, dtype='float32'
                )
304 305 306 307
                mse_loss = paddle.nn.functional.mse_loss(input, target, 'none')

                exe = paddle.static.Executor(place)
                exe.run(startup_prog)
308 309 310 311 312
                (static_result,) = exe.run(
                    prog,
                    feed={"input": input_np, "target": target_np},
                    fetch_list=[mse_loss],
                )
313 314

            paddle.disable_static()
315 316 317
            dy_ret = paddle.nn.functional.mse_loss(
                paddle.to_tensor(input_np), paddle.to_tensor(target_np), 'none'
            )
318 319 320 321
            dy_result = dy_ret.numpy()

            sub = input_np - target_np
            expected = sub * sub
322 323 324
            np.testing.assert_allclose(static_result, expected, rtol=1e-05)
            np.testing.assert_allclose(static_result, dy_result, rtol=1e-05)
            np.testing.assert_allclose(dy_result, expected, rtol=1e-05)
325 326 327
            self.assertTrue(dy_result.shape, [1])


R
ruri 已提交
328
if __name__ == "__main__":
329
    paddle.enable_static()
R
ruri 已提交
330
    unittest.main()