test_mse_loss.py 13.1 KB
Newer Older
R
ruri 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
17
import paddle
R
ruri 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31
import paddle.fluid.core as core
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from paddle.fluid.executor import Executor


class TestMseLoss(unittest.TestCase):
    def test_mse_loss(self):
        input_val = np.random.uniform(0.1, 0.5, (2, 3)).astype("float32")
        label_val = np.random.uniform(0.1, 0.5, (2, 3)).astype("float32")

        sub = input_val - label_val
        np_result = np.mean(sub * sub)

32 33
        input_var = fluid.data(name="input", shape=[-1, 3], dtype="float32")
        label_var = fluid.data(name="label", shape=[-1, 3], dtype="float32")
R
ruri 已提交
34 35

        output = layers.mse_loss(input=input_var, label=label_var)
36 37 38
        for use_cuda in (
            [False, True] if core.is_compiled_with_cuda() else [False]
        ):
R
ruri 已提交
39 40
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = Executor(place)
41 42 43 44 45
            (result,) = exe.run(
                fluid.default_main_program(),
                feed={"input": input_val, "label": label_val},
                fetch_list=[output],
            )
R
ruri 已提交
46

47
            np.testing.assert_allclose(np_result, result, rtol=1e-05)
R
ruri 已提交
48 49


50 51 52 53
class TestMseInvalidInput(unittest.TestCase):
    def test_error(self):
        def test_invalid_input():
            input = [256, 3]
54
            label = fluid.data(name='label1', shape=[None, 3], dtype='float32')
55 56 57 58 59 60 61 62 63 64 65 66
            loss = fluid.layers.mse_loss(input, label)

        self.assertRaises(TypeError, test_invalid_input)

        def test_invalid_label():
            input = fluid.data(name='input1', shape=[None, 3], dtype='float32')
            label = [256, 3]
            loss = fluid.layers.mse_loss(input, label)

        self.assertRaises(TypeError, test_invalid_label)


67 68 69 70 71
class TestNNMseLoss(unittest.TestCase):
    def test_NNMseLoss_mean(self):
        for dim in [[10, 10], [2, 10, 10], [3, 3, 10, 10]]:
            input_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
            label_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
72
            paddle.enable_static()
73 74
            prog = fluid.Program()
            startup_prog = fluid.Program()
75 76 77 78 79
            place = (
                fluid.CUDAPlace(0)
                if fluid.core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
80
            with fluid.program_guard(prog, startup_prog):
81 82 83 84 85 86
                input = fluid.layers.data(
                    name='input', shape=dim, dtype='float32'
                )
                label = fluid.layers.data(
                    name='label', shape=dim, dtype='float32'
                )
87 88 89 90
                mse_loss = paddle.nn.loss.MSELoss()
                ret = mse_loss(input, label)

                exe = fluid.Executor(place)
91 92 93 94 95
                (static_result,) = exe.run(
                    prog,
                    feed={"input": input_np, "label": label_np},
                    fetch_list=[ret],
                )
96 97 98

            with fluid.dygraph.guard():
                mse_loss = paddle.nn.loss.MSELoss()
99 100 101 102
                dy_ret = mse_loss(
                    fluid.dygraph.to_variable(input_np),
                    fluid.dygraph.to_variable(label_np),
                )
103 104 105 106
                dy_result = dy_ret.numpy()

            sub = input_np - label_np
            expected = np.mean(sub * sub)
107 108 109
            np.testing.assert_allclose(static_result, expected, rtol=1e-05)
            np.testing.assert_allclose(static_result, dy_result, rtol=1e-05)
            np.testing.assert_allclose(dy_result, expected, rtol=1e-05)
110 111 112 113 114 115
            self.assertTrue(dy_result.shape, [1])

    def test_NNMseLoss_sum(self):
        for dim in [[10, 10], [2, 10, 10], [3, 3, 10, 10]]:
            input_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
            label_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
116
            paddle.enable_static()
117 118
            prog = fluid.Program()
            startup_prog = fluid.Program()
119 120 121 122 123
            place = (
                fluid.CUDAPlace(0)
                if fluid.core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
124
            with fluid.program_guard(prog, startup_prog):
125 126 127 128 129 130
                input = fluid.layers.data(
                    name='input', shape=dim, dtype='float32'
                )
                label = fluid.layers.data(
                    name='label', shape=dim, dtype='float32'
                )
131 132 133 134
                mse_loss = paddle.nn.loss.MSELoss(reduction='sum')
                ret = mse_loss(input, label)

                exe = fluid.Executor(place)
135 136 137 138 139
                (static_result,) = exe.run(
                    prog,
                    feed={"input": input_np, "label": label_np},
                    fetch_list=[ret],
                )
140 141 142

            with fluid.dygraph.guard():
                mse_loss = paddle.nn.loss.MSELoss(reduction='sum')
143 144 145 146
                dy_ret = mse_loss(
                    fluid.dygraph.to_variable(input_np),
                    fluid.dygraph.to_variable(label_np),
                )
147 148 149 150
                dy_result = dy_ret.numpy()

            sub = input_np - label_np
            expected = np.sum(sub * sub)
151 152 153
            np.testing.assert_allclose(static_result, expected, rtol=1e-05)
            np.testing.assert_allclose(static_result, dy_result, rtol=1e-05)
            np.testing.assert_allclose(dy_result, expected, rtol=1e-05)
154 155 156 157 158 159
            self.assertTrue(dy_result.shape, [1])

    def test_NNMseLoss_none(self):
        for dim in [[10, 10], [2, 10, 10], [3, 3, 10, 10]]:
            input_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
            label_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
160
            paddle.enable_static()
161 162
            prog = fluid.Program()
            startup_prog = fluid.Program()
163 164 165 166 167
            place = (
                fluid.CUDAPlace(0)
                if fluid.core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
168
            with fluid.program_guard(prog, startup_prog):
169 170 171 172 173 174
                input = fluid.layers.data(
                    name='input', shape=dim, dtype='float32'
                )
                label = fluid.layers.data(
                    name='label', shape=dim, dtype='float32'
                )
175 176 177 178
                mse_loss = paddle.nn.loss.MSELoss(reduction='none')
                ret = mse_loss(input, label)

                exe = fluid.Executor(place)
179 180 181 182 183
                (static_result,) = exe.run(
                    prog,
                    feed={"input": input_np, "label": label_np},
                    fetch_list=[ret],
                )
184 185 186

            with fluid.dygraph.guard():
                mse_loss = paddle.nn.loss.MSELoss(reduction='none')
187 188 189 190
                dy_ret = mse_loss(
                    fluid.dygraph.to_variable(input_np),
                    fluid.dygraph.to_variable(label_np),
                )
191 192 193
                dy_result = dy_ret.numpy()

            sub = input_np - label_np
194
            expected = sub * sub
195 196 197
            np.testing.assert_allclose(static_result, expected, rtol=1e-05)
            np.testing.assert_allclose(static_result, dy_result, rtol=1e-05)
            np.testing.assert_allclose(dy_result, expected, rtol=1e-05)
198 199 200
            self.assertTrue(dy_result.shape, [1])


201 202 203 204 205 206 207 208
class TestNNFunctionalMseLoss(unittest.TestCase):
    def test_NNFunctionalMseLoss_mean(self):
        for dim in [[10, 10], [2, 10, 10], [3, 3, 10, 10]]:
            input_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
            target_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
            paddle.enable_static()
            prog = paddle.static.Program()
            startup_prog = paddle.static.Program()
209 210 211 212 213
            place = (
                paddle.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else paddle.CPUPlace()
            )
214
            with paddle.static.program_guard(prog, startup_prog):
215 216 217 218 219 220
                input = paddle.fluid.data(
                    name='input', shape=dim, dtype='float32'
                )
                target = paddle.fluid.data(
                    name='target', shape=dim, dtype='float32'
                )
221 222 223 224
                mse_loss = paddle.nn.functional.mse_loss(input, target, 'mean')

            exe = paddle.static.Executor(place)
            exe.run(startup_prog)
225 226 227 228 229
            (static_result,) = exe.run(
                prog,
                feed={"input": input_np, "target": target_np},
                fetch_list=[mse_loss],
            )
230 231

            paddle.disable_static()
232 233 234
            dy_ret = paddle.nn.functional.mse_loss(
                paddle.to_tensor(input_np), paddle.to_tensor(target_np), 'mean'
            )
235 236 237 238
            dy_result = dy_ret.numpy()

            sub = input_np - target_np
            expected = np.mean(sub * sub)
239 240 241
            np.testing.assert_allclose(static_result, expected, rtol=1e-05)
            np.testing.assert_allclose(static_result, dy_result, rtol=1e-05)
            np.testing.assert_allclose(dy_result, expected, rtol=1e-05)
242 243 244 245 246 247 248 249 250
            self.assertTrue(dy_result.shape, [1])

    def test_NNFunctionalMseLoss_sum(self):
        for dim in [[10, 10], [2, 10, 10], [3, 3, 10, 10]]:
            input_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
            target_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
            paddle.enable_static()
            prog = paddle.static.Program()
            startup_prog = paddle.static.Program()
251 252 253 254 255
            place = (
                paddle.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else paddle.CPUPlace()
            )
256
            with paddle.static.program_guard(prog, startup_prog):
257 258 259 260 261 262
                input = paddle.fluid.data(
                    name='input', shape=dim, dtype='float32'
                )
                target = paddle.fluid.data(
                    name='target', shape=dim, dtype='float32'
                )
263 264 265 266
                mse_loss = paddle.nn.functional.mse_loss(input, target, 'sum')

                exe = paddle.static.Executor(place)
                exe.run(startup_prog)
267 268 269 270 271
                (static_result,) = exe.run(
                    prog,
                    feed={"input": input_np, "target": target_np},
                    fetch_list=[mse_loss],
                )
272 273

            paddle.disable_static()
274 275 276
            dy_ret = paddle.nn.functional.mse_loss(
                paddle.to_tensor(input_np), paddle.to_tensor(target_np), 'sum'
            )
277 278 279 280
            dy_result = dy_ret.numpy()

            sub = input_np - target_np
            expected = np.sum(sub * sub)
281 282 283
            np.testing.assert_allclose(static_result, expected, rtol=1e-05)
            np.testing.assert_allclose(static_result, dy_result, rtol=1e-05)
            np.testing.assert_allclose(dy_result, expected, rtol=1e-05)
284 285 286 287 288 289 290 291 292
            self.assertTrue(dy_result.shape, [1])

    def test_NNFunctionalMseLoss_none(self):
        for dim in [[10, 10], [2, 10, 10], [3, 3, 10, 10]]:
            input_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
            target_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
            paddle.enable_static()
            prog = paddle.static.Program()
            startup_prog = paddle.static.Program()
293 294 295 296 297
            place = (
                paddle.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else paddle.CPUPlace()
            )
298
            with paddle.static.program_guard(prog, startup_prog):
299 300 301 302 303 304
                input = paddle.fluid.data(
                    name='input', shape=dim, dtype='float32'
                )
                target = paddle.fluid.data(
                    name='target', shape=dim, dtype='float32'
                )
305 306 307 308
                mse_loss = paddle.nn.functional.mse_loss(input, target, 'none')

                exe = paddle.static.Executor(place)
                exe.run(startup_prog)
309 310 311 312 313
                (static_result,) = exe.run(
                    prog,
                    feed={"input": input_np, "target": target_np},
                    fetch_list=[mse_loss],
                )
314 315

            paddle.disable_static()
316 317 318
            dy_ret = paddle.nn.functional.mse_loss(
                paddle.to_tensor(input_np), paddle.to_tensor(target_np), 'none'
            )
319 320 321 322
            dy_result = dy_ret.numpy()

            sub = input_np - target_np
            expected = sub * sub
323 324 325
            np.testing.assert_allclose(static_result, expected, rtol=1e-05)
            np.testing.assert_allclose(static_result, dy_result, rtol=1e-05)
            np.testing.assert_allclose(dy_result, expected, rtol=1e-05)
326 327 328
            self.assertTrue(dy_result.shape, [1])


R
ruri 已提交
329
if __name__ == "__main__":
330
    paddle.enable_static()
R
ruri 已提交
331
    unittest.main()