test_matrix_power_op.py 10.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle
from op_test import OpTest

paddle.enable_static()


class TestMatrixPowerOp(OpTest):
    def config(self):
        self.matrix_shape = [10, 10]
        self.dtype = "float64"
        self.n = 0

    def setUp(self):
        self.op_type = "matrix_power"
        self.config()

        np.random.seed(123)
        mat = np.random.random(self.matrix_shape).astype(self.dtype)
        powered_mat = np.linalg.matrix_power(mat, self.n)

        self.inputs = {"X": mat}
        self.outputs = {"Out": powered_mat}
        self.attrs = {"n": self.n}

    def test_check_output(self):
        self.check_output()

    def test_grad(self):
47 48 49
        self.check_grad(
            ["X"], "Out", numeric_grad_delta=1e-5, max_relative_error=1e-7
        )
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107


class TestMatrixPowerOpN1(TestMatrixPowerOp):
    def config(self):
        self.matrix_shape = [10, 10]
        self.dtype = "float64"
        self.n = 1


class TestMatrixPowerOpN2(TestMatrixPowerOp):
    def config(self):
        self.matrix_shape = [10, 10]
        self.dtype = "float64"
        self.n = 2


class TestMatrixPowerOpN3(TestMatrixPowerOp):
    def config(self):
        self.matrix_shape = [10, 10]
        self.dtype = "float64"
        self.n = 3


class TestMatrixPowerOpN4(TestMatrixPowerOp):
    def config(self):
        self.matrix_shape = [10, 10]
        self.dtype = "float64"
        self.n = 4


class TestMatrixPowerOpN5(TestMatrixPowerOp):
    def config(self):
        self.matrix_shape = [10, 10]
        self.dtype = "float64"
        self.n = 5


class TestMatrixPowerOpN6(TestMatrixPowerOp):
    def config(self):
        self.matrix_shape = [10, 10]
        self.dtype = "float64"
        self.n = 6


class TestMatrixPowerOpN10(TestMatrixPowerOp):
    def config(self):
        self.matrix_shape = [10, 10]
        self.dtype = "float64"
        self.n = 10


class TestMatrixPowerOpNMinus(TestMatrixPowerOp):
    def config(self):
        self.matrix_shape = [10, 10]
        self.dtype = "float64"
        self.n = -1

    def test_grad(self):
108 109 110
        self.check_grad(
            ["X"], "Out", numeric_grad_delta=1e-5, max_relative_error=1e-6
        )
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154


class TestMatrixPowerOpNMinus2(TestMatrixPowerOpNMinus):
    def config(self):
        self.matrix_shape = [10, 10]
        self.dtype = "float64"
        self.n = -2


class TestMatrixPowerOpNMinus3(TestMatrixPowerOpNMinus):
    def config(self):
        self.matrix_shape = [10, 10]
        self.dtype = "float64"
        self.n = -3


class TestMatrixPowerOpNMinus4(TestMatrixPowerOpNMinus):
    def config(self):
        self.matrix_shape = [10, 10]
        self.dtype = "float64"
        self.n = -4


class TestMatrixPowerOpNMinus5(TestMatrixPowerOpNMinus):
    def config(self):
        self.matrix_shape = [10, 10]
        self.dtype = "float64"
        self.n = -5


class TestMatrixPowerOpNMinus6(TestMatrixPowerOpNMinus):
    def config(self):
        self.matrix_shape = [10, 10]
        self.dtype = "float64"
        self.n = -6


class TestMatrixPowerOpNMinus10(TestMatrixPowerOp):
    def config(self):
        self.matrix_shape = [10, 10]
        self.dtype = "float64"
        self.n = -10

    def test_grad(self):
155 156 157
        self.check_grad(
            ["X"], "Out", numeric_grad_delta=1e-5, max_relative_error=1e-6
        )
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254


class TestMatrixPowerOpBatched1(TestMatrixPowerOp):
    def config(self):
        self.matrix_shape = [8, 4, 4]
        self.dtype = "float64"
        self.n = 5


class TestMatrixPowerOpBatched2(TestMatrixPowerOp):
    def config(self):
        self.matrix_shape = [2, 6, 4, 4]
        self.dtype = "float64"
        self.n = 4


class TestMatrixPowerOpBatched3(TestMatrixPowerOp):
    def config(self):
        self.matrix_shape = [2, 6, 4, 4]
        self.dtype = "float64"
        self.n = 0


class TestMatrixPowerOpBatchedLong(TestMatrixPowerOp):
    def config(self):
        self.matrix_shape = [1, 2, 3, 4, 4, 3, 3]
        self.dtype = "float64"
        self.n = 3


class TestMatrixPowerOpLarge1(TestMatrixPowerOp):
    def config(self):
        self.matrix_shape = [32, 32]
        self.dtype = "float64"
        self.n = 3


class TestMatrixPowerOpLarge2(TestMatrixPowerOp):
    def config(self):
        self.matrix_shape = [10, 10]
        self.dtype = "float64"
        self.n = 32


class TestMatrixPowerOpFP32(TestMatrixPowerOp):
    def config(self):
        self.matrix_shape = [10, 10]
        self.dtype = "float32"
        self.n = 2

    def test_grad(self):
        self.check_grad(["X"], "Out", max_relative_error=1e-2)


class TestMatrixPowerOpBatchedFP32(TestMatrixPowerOpFP32):
    def config(self):
        self.matrix_shape = [2, 8, 4, 4]
        self.dtype = "float32"
        self.n = 2


class TestMatrixPowerOpLarge1FP32(TestMatrixPowerOpFP32):
    def config(self):
        self.matrix_shape = [32, 32]
        self.dtype = "float32"
        self.n = 2


class TestMatrixPowerOpLarge2FP32(TestMatrixPowerOpFP32):
    def config(self):
        self.matrix_shape = [10, 10]
        self.dtype = "float32"
        self.n = 32


class TestMatrixPowerOpFP32Minus(TestMatrixPowerOpFP32):
    def config(self):
        self.matrix_shape = [10, 10]
        self.dtype = "float32"
        self.n = -1


class TestMatrixPowerAPI(unittest.TestCase):
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = fluid.data(name="input_x", shape=[4, 4], dtype="float64")
            result = paddle.linalg.matrix_power(x=input_x, n=-2)
            input_np = np.random.random([4, 4]).astype("float64")
            result_np = np.linalg.matrix_power(input_np, -2)

            exe = fluid.Executor(place)
255 256 257 258 259 260 261 262
            fetches = exe.run(
                fluid.default_main_program(),
                feed={"input_x": input_np},
                fetch_list=[result],
            )
            np.testing.assert_allclose(
                fetches[0], np.linalg.matrix_power(input_np, -2), rtol=1e-05
            )
263 264 265 266 267 268 269 270 271 272 273

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                input_np = np.random.random([4, 4]).astype("float64")
                input = paddle.to_tensor(input_np)
                result = paddle.linalg.matrix_power(input, -2)
274 275 276 277 278
                np.testing.assert_allclose(
                    result.numpy(),
                    np.linalg.matrix_power(input_np, -2),
                    rtol=1e-05,
                )
279 280 281 282 283 284 285 286 287 288 289


class TestMatrixPowerAPIError(unittest.TestCase):
    def test_errors(self):
        input_np = np.random.random([4, 4]).astype("float64")

        # input must be Variable.
        self.assertRaises(TypeError, paddle.linalg.matrix_power, input_np)

        # n must be int
        for n in [2.0, '2', -2.0]:
290 291 292
            input = fluid.data(
                name="input_float32", shape=[4, 4], dtype='float32'
            )
293 294
            self.assertRaises(TypeError, paddle.linalg.matrix_power, input, n)

295
        # The data type of input must be float32 or float64.
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
        for dtype in ["bool", "int32", "int64", "float16"]:
            input = fluid.data(name="input_" + dtype, shape=[4, 4], dtype=dtype)
            self.assertRaises(TypeError, paddle.linalg.matrix_power, input, 2)

        # When out is set, the data type must be the same as input.
        input = fluid.data(name="input_1", shape=[4, 4], dtype="float32")
        out = fluid.data(name="output", shape=[4, 4], dtype="float64")
        self.assertRaises(TypeError, paddle.linalg.matrix_power, input, 2, out)

        # The number of dimensions of input must be >= 2.
        input = fluid.data(name="input_2", shape=[4], dtype="float32")
        self.assertRaises(ValueError, paddle.linalg.matrix_power, input, 2)

        # The inner-most 2 dimensions of input should be equal to each other
        input = fluid.data(name="input_3", shape=[4, 5], dtype="float32")
        self.assertRaises(ValueError, paddle.linalg.matrix_power, input, 2)


class TestMatrixPowerSingularAPI(unittest.TestCase):
    def setUp(self):
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(name="input", shape=[4, 4], dtype="float64")
            result = paddle.linalg.matrix_power(x=input, n=-2)

            input_np = np.zeros([4, 4]).astype("float64")

            exe = fluid.Executor(place)
            try:
329 330 331 332 333
                fetches = exe.run(
                    fluid.default_main_program(),
                    feed={"input": input_np},
                    fetch_list=[result],
                )
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
            except RuntimeError as ex:
                print("The mat is singular")
            except ValueError as ex:
                print("The mat is singular")

    def test_static(self):
        paddle.enable_static()
        for place in self.places:
            self.check_static_result(place=place)
        paddle.disable_static()

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                input_np = np.ones([4, 4]).astype("float64")
                input = fluid.dygraph.to_variable(input_np)
                try:
                    result = paddle.linalg.matrix_power(input, -2)
                except RuntimeError as ex:
                    print("The mat is singular")
                except ValueError as ex:
                    print("The mat is singular")


if __name__ == "__main__":
    paddle.enable_static()
    unittest.main()