test_word2vec.py 10.4 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
L
Liu Yiqun 已提交
2 3
#
# Licensed under the Apache License, Version 2.0 (the "License");
D
dzhwinter 已提交
4 5
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import paddle
18
import paddle.fluid as fluid
19
from paddle.fluid.layers.device import get_places
Q
qingqing01 已提交
20
from paddle.fluid.layers.control_flow import ParallelDo
Y
Yang Yu 已提交
21
import unittest
Y
Yang Yu 已提交
22
import os
23
import numpy as np
24 25
import math
import sys
Q
QI JUN 已提交
26

Y
Yang Yu 已提交
27

武毅 已提交
28
def train(use_cuda, is_sparse, is_parallel, save_dirname, is_local=True):
Y
Yang Yu 已提交
29 30 31 32 33
    PASS_NUM = 100
    EMBED_SIZE = 32
    HIDDEN_SIZE = 256
    N = 5
    BATCH_SIZE = 32
Y
Yang Yu 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    IS_SPARSE = is_sparse

    def __network__(words):
        embed_first = fluid.layers.embedding(
            input=words[0],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w')
        embed_second = fluid.layers.embedding(
            input=words[1],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w')
        embed_third = fluid.layers.embedding(
            input=words[2],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w')
        embed_forth = fluid.layers.embedding(
            input=words[3],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w')

        concat_embed = fluid.layers.concat(
            input=[embed_first, embed_second, embed_third, embed_forth], axis=1)
        hidden1 = fluid.layers.fc(input=concat_embed,
                                  size=HIDDEN_SIZE,
                                  act='sigmoid')
        predict_word = fluid.layers.fc(input=hidden1,
                                       size=dict_size,
                                       act='softmax')
        cost = fluid.layers.cross_entropy(input=predict_word, label=words[4])
Y
Yu Yang 已提交
71
        avg_cost = fluid.layers.mean(cost)
72
        return avg_cost, predict_word
Y
Yang Yu 已提交
73 74 75 76 77 78 79 80 81 82

    word_dict = paddle.dataset.imikolov.build_dict()
    dict_size = len(word_dict)

    first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64')
    second_word = fluid.layers.data(name='secondw', shape=[1], dtype='int64')
    third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64')
    forth_word = fluid.layers.data(name='forthw', shape=[1], dtype='int64')
    next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64')

L
Liu Yiqun 已提交
83
    if not is_parallel:
84
        avg_cost, predict_word = __network__(
Y
Yang Yu 已提交
85 86
            [first_word, second_word, third_word, forth_word, next_word])
    else:
87
        places = get_places()
Q
qingqing01 已提交
88
        pd = ParallelDo(places)
Y
Yang Yu 已提交
89
        with pd.do():
90
            avg_cost, predict_word = __network__(
91 92 93 94 95
                list(
                    map(pd.read_input, [
                        first_word, second_word, third_word, forth_word,
                        next_word
                    ])))
Y
Yang Yu 已提交
96 97
            pd.write_output(avg_cost)

Y
Yu Yang 已提交
98
        avg_cost = fluid.layers.mean(pd())
Y
Yang Yu 已提交
99

Y
Yang Yu 已提交
100
    sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
W
Wu Yi 已提交
101
    sgd_optimizer.minimize(avg_cost)
Y
Yang Yu 已提交
102 103 104 105 106 107 108 109 110 111

    train_reader = paddle.batch(
        paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE)

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)
    feeder = fluid.DataFeeder(
        feed_list=[first_word, second_word, third_word, forth_word, next_word],
        place=place)

武毅 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    def train_loop(main_program):
        exe.run(fluid.default_startup_program())

        for pass_id in range(PASS_NUM):
            for data in train_reader():
                avg_cost_np = exe.run(main_program,
                                      feed=feeder.feed(data),
                                      fetch_list=[avg_cost])
                if avg_cost_np[0] < 5.0:
                    if save_dirname is not None:
                        fluid.io.save_inference_model(save_dirname, [
                            'firstw', 'secondw', 'thirdw', 'forthw'
                        ], [predict_word], exe)
                    return
                if math.isnan(float(avg_cost_np[0])):
                    sys.exit("got NaN loss, training failed.")

        raise AssertionError("Cost is too large {0:2.2}".format(avg_cost_np[0]))

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
134 135
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
136 137 138 139
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
140
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
141
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
142 143
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
144
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
145
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
146 147 148 149 150 151 152 153
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
Y
Yang Yu 已提交
154 155


L
Liu Yiqun 已提交
156 157 158 159 160 161 162
def infer(use_cuda, save_dirname=None):
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

163 164 165 166 167 168 169 170 171 172 173 174
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

        word_dict = paddle.dataset.imikolov.build_dict()
        dict_size = len(word_dict)

175 176 177 178 179
        # Setup inputs by creating 4 LoDTensors representing 4 words. Here each word
        # is simply an index to look up for the corresponding word vector and hence
        # the shape of word (base_shape) should be [1]. The recursive_sequence_lengths,
        # which is length-based level of detail (lod) of each LoDTensor, should be [[1]]
        # meaning there is only one level of detail and there is only one sequence of
180 181 182
        # one word on this level.
        # Note that recursive_sequence_lengths should be a list of lists.
        recursive_seq_lens = [[1]]
183
        base_shape = [1]
K
Kexin Zhao 已提交
184
        # The range of random integers is [low, high]
185
        first_word = fluid.create_random_int_lodtensor(
186
            recursive_seq_lens, base_shape, place, low=0, high=dict_size - 1)
187
        second_word = fluid.create_random_int_lodtensor(
188
            recursive_seq_lens, base_shape, place, low=0, high=dict_size - 1)
189
        third_word = fluid.create_random_int_lodtensor(
190
            recursive_seq_lens, base_shape, place, low=0, high=dict_size - 1)
191
        fourth_word = fluid.create_random_int_lodtensor(
192
            recursive_seq_lens, base_shape, place, low=0, high=dict_size - 1)
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

        assert feed_target_names[0] == 'firstw'
        assert feed_target_names[1] == 'secondw'
        assert feed_target_names[2] == 'thirdw'
        assert feed_target_names[3] == 'forthw'

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        results = exe.run(inference_program,
                          feed={
                              feed_target_names[0]: first_word,
                              feed_target_names[1]: second_word,
                              feed_target_names[2]: third_word,
                              feed_target_names[3]: fourth_word
                          },
                          fetch_list=fetch_targets,
                          return_numpy=False)
210
        print(results[0].recursive_sequence_lengths())
211
        np_data = np.array(results[0])
212
        print("Inference Shape: ", np_data.shape)
L
Liu Yiqun 已提交
213 214 215


def main(use_cuda, is_sparse, is_parallel):
216 217
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
L
Liu Yiqun 已提交
218 219 220 221 222 223 224

    if not is_parallel:
        save_dirname = "word2vec.inference.model"
    else:
        save_dirname = None

    train(use_cuda, is_sparse, is_parallel, save_dirname)
225 226 227
    infer(use_cuda, save_dirname)


Y
Yang Yu 已提交
228
FULL_TEST = os.getenv('FULL_TEST',
Y
Yang Yu 已提交
229
                      '0').lower() in ['true', '1', 't', 'y', 'yes', 'on']
Y
Yang Yu 已提交
230
SKIP_REASON = "Only run minimum number of tests in CI server, to make CI faster"
Y
Yang Yu 已提交
231 232 233


class W2VTest(unittest.TestCase):
Y
Yang Yu 已提交
234 235 236
    pass


L
Liu Yiqun 已提交
237
def inject_test_method(use_cuda, is_sparse, is_parallel):
Y
Yang Yu 已提交
238 239
    fn_name = "test_{0}_{1}_{2}".format("cuda" if use_cuda else "cpu", "sparse"
                                        if is_sparse else "dense", "parallel"
L
Liu Yiqun 已提交
240
                                        if is_parallel else "normal")
Y
Yang Yu 已提交
241 242 243 244 245 246 247

    def __impl__(*args, **kwargs):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
L
Liu Yiqun 已提交
248 249 250 251
                main(
                    use_cuda=use_cuda,
                    is_sparse=is_sparse,
                    is_parallel=is_parallel)
Y
Yang Yu 已提交
252

253
    if (not fluid.core.is_compiled_with_cuda() or use_cuda) and is_sparse:
Y
Yang Yu 已提交
254 255 256 257 258 259 260
        fn = __impl__
    else:
        # skip the other test when on CI server
        fn = unittest.skipUnless(
            condition=FULL_TEST, reason=SKIP_REASON)(__impl__)

    setattr(W2VTest, fn_name, fn)
Y
Yang Yu 已提交
261 262


Y
Yang Yu 已提交
263 264
for use_cuda in (False, True):
    for is_sparse in (False, True):
L
Liu Yiqun 已提交
265 266
        for is_parallel in (False, True):
            inject_test_method(use_cuda, is_sparse, is_parallel)
Y
Yang Yu 已提交
267 268 269

if __name__ == '__main__':
    unittest.main()