test_word2vec.py 8.6 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
L
Liu Yiqun 已提交
2 3
#
# Licensed under the Apache License, Version 2.0 (the "License");
D
dzhwinter 已提交
4 5
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
QI JUN 已提交
15
import paddle.v2 as paddle
16
import paddle.fluid as fluid
Y
Yang Yu 已提交
17
import unittest
Y
Yang Yu 已提交
18
import os
19
import numpy as np
20 21
import math
import sys
Q
QI JUN 已提交
22

Y
Yang Yu 已提交
23

24
def create_random_lodtensor(lod, place, low, high):
L
Liu Yiqun 已提交
25
    # The range of data elements is [low, high]
26 27 28 29 30 31 32
    data = np.random.random_integers(low, high, [lod[-1], 1]).astype("int64")
    res = fluid.LoDTensor()
    res.set(data, place)
    res.set_lod([lod])
    return res


L
Liu Yiqun 已提交
33
def train(use_cuda, is_sparse, is_parallel, save_dirname):
Y
Yang Yu 已提交
34 35 36 37 38
    PASS_NUM = 100
    EMBED_SIZE = 32
    HIDDEN_SIZE = 256
    N = 5
    BATCH_SIZE = 32
Y
Yang Yu 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
    IS_SPARSE = is_sparse

    def __network__(words):
        embed_first = fluid.layers.embedding(
            input=words[0],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w')
        embed_second = fluid.layers.embedding(
            input=words[1],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w')
        embed_third = fluid.layers.embedding(
            input=words[2],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w')
        embed_forth = fluid.layers.embedding(
            input=words[3],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w')

        concat_embed = fluid.layers.concat(
            input=[embed_first, embed_second, embed_third, embed_forth], axis=1)
        hidden1 = fluid.layers.fc(input=concat_embed,
                                  size=HIDDEN_SIZE,
                                  act='sigmoid')
        predict_word = fluid.layers.fc(input=hidden1,
                                       size=dict_size,
                                       act='softmax')
        cost = fluid.layers.cross_entropy(input=predict_word, label=words[4])
Y
Yu Yang 已提交
76
        avg_cost = fluid.layers.mean(cost)
77
        return avg_cost, predict_word
Y
Yang Yu 已提交
78 79 80 81 82 83 84 85 86 87

    word_dict = paddle.dataset.imikolov.build_dict()
    dict_size = len(word_dict)

    first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64')
    second_word = fluid.layers.data(name='secondw', shape=[1], dtype='int64')
    third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64')
    forth_word = fluid.layers.data(name='forthw', shape=[1], dtype='int64')
    next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64')

L
Liu Yiqun 已提交
88
    if not is_parallel:
89
        avg_cost, predict_word = __network__(
Y
Yang Yu 已提交
90 91 92 93 94
            [first_word, second_word, third_word, forth_word, next_word])
    else:
        places = fluid.layers.get_places()
        pd = fluid.layers.ParallelDo(places)
        with pd.do():
95
            avg_cost, predict_word = __network__(
Y
Yang Yu 已提交
96 97 98 99 100
                map(pd.read_input, [
                    first_word, second_word, third_word, forth_word, next_word
                ]))
            pd.write_output(avg_cost)

Y
Yu Yang 已提交
101
        avg_cost = fluid.layers.mean(pd())
Y
Yang Yu 已提交
102

Y
Yang Yu 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
    sgd_optimizer.minimize(avg_cost)

    train_reader = paddle.batch(
        paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE)

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)
    feeder = fluid.DataFeeder(
        feed_list=[first_word, second_word, third_word, forth_word, next_word],
        place=place)

    exe.run(fluid.default_startup_program())

    for pass_id in range(PASS_NUM):
        for data in train_reader():
            avg_cost_np = exe.run(fluid.default_main_program(),
                                  feed=feeder.feed(data),
                                  fetch_list=[avg_cost])
            if avg_cost_np[0] < 5.0:
123 124 125 126
                if save_dirname is not None:
                    fluid.io.save_inference_model(save_dirname, [
                        'firstw', 'secondw', 'thirdw', 'forthw'
                    ], [predict_word], exe)
Y
Yang Yu 已提交
127
                return
128 129 130
            if math.isnan(float(avg_cost_np[0])):
                sys.exit("got NaN loss, training failed.")

Y
Yang Yu 已提交
131 132 133
    raise AssertionError("Cost is too large {0:2.2}".format(avg_cost_np[0]))


L
Liu Yiqun 已提交
134 135 136 137 138 139 140
def infer(use_cuda, save_dirname=None):
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

        word_dict = paddle.dataset.imikolov.build_dict()
        dict_size = len(word_dict)

        # Setup inputs, by creating 4 words, the lod of which should be [0, 1]
        lod = [0, 1]
        first_word = create_random_lodtensor(
            lod, place, low=0, high=dict_size - 1)
        second_word = create_random_lodtensor(
            lod, place, low=0, high=dict_size - 1)
        third_word = create_random_lodtensor(
            lod, place, low=0, high=dict_size - 1)
        fourth_word = create_random_lodtensor(
            lod, place, low=0, high=dict_size - 1)

        assert feed_target_names[0] == 'firstw'
        assert feed_target_names[1] == 'secondw'
        assert feed_target_names[2] == 'thirdw'
        assert feed_target_names[3] == 'forthw'

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        results = exe.run(inference_program,
                          feed={
                              feed_target_names[0]: first_word,
                              feed_target_names[1]: second_word,
                              feed_target_names[2]: third_word,
                              feed_target_names[3]: fourth_word
                          },
                          fetch_list=fetch_targets,
                          return_numpy=False)
        print(results[0].lod())
        np_data = np.array(results[0])
        print("Inference Shape: ", np_data.shape)
L
Liu Yiqun 已提交
183 184 185


def main(use_cuda, is_sparse, is_parallel):
186 187
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
L
Liu Yiqun 已提交
188 189 190 191 192 193 194

    if not is_parallel:
        save_dirname = "word2vec.inference.model"
    else:
        save_dirname = None

    train(use_cuda, is_sparse, is_parallel, save_dirname)
195 196 197
    infer(use_cuda, save_dirname)


Y
Yang Yu 已提交
198
FULL_TEST = os.getenv('FULL_TEST',
Y
Yang Yu 已提交
199
                      '0').lower() in ['true', '1', 't', 'y', 'yes', 'on']
Y
Yang Yu 已提交
200
SKIP_REASON = "Only run minimum number of tests in CI server, to make CI faster"
Y
Yang Yu 已提交
201 202 203


class W2VTest(unittest.TestCase):
Y
Yang Yu 已提交
204 205 206
    pass


L
Liu Yiqun 已提交
207
def inject_test_method(use_cuda, is_sparse, is_parallel):
Y
Yang Yu 已提交
208 209
    fn_name = "test_{0}_{1}_{2}".format("cuda" if use_cuda else "cpu", "sparse"
                                        if is_sparse else "dense", "parallel"
L
Liu Yiqun 已提交
210
                                        if is_parallel else "normal")
Y
Yang Yu 已提交
211 212 213 214 215 216 217

    def __impl__(*args, **kwargs):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
L
Liu Yiqun 已提交
218 219 220 221
                main(
                    use_cuda=use_cuda,
                    is_sparse=is_sparse,
                    is_parallel=is_parallel)
Y
Yang Yu 已提交
222

L
Liu Yiqun 已提交
223
    if use_cuda and is_sparse:
Y
Yang Yu 已提交
224 225 226 227 228 229 230
        fn = __impl__
    else:
        # skip the other test when on CI server
        fn = unittest.skipUnless(
            condition=FULL_TEST, reason=SKIP_REASON)(__impl__)

    setattr(W2VTest, fn_name, fn)
Y
Yang Yu 已提交
231 232


Y
Yang Yu 已提交
233 234
for use_cuda in (False, True):
    for is_sparse in (False, True):
L
Liu Yiqun 已提交
235 236
        for is_parallel in (False, True):
            inject_test_method(use_cuda, is_sparse, is_parallel)
Y
Yang Yu 已提交
237 238 239

if __name__ == '__main__':
    unittest.main()