notest_understand_sentiment.py 14.0 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15 16
from __future__ import print_function

17
from paddle.fluid.layers.device import get_places
Q
qingqing01 已提交
18
from paddle.fluid.layers.control_flow import ParallelDo
19
import unittest
20
import paddle.fluid as fluid
21
import paddle
22
import contextlib
23
import math
24
import numpy as np
25
import sys
武毅 已提交
26
import os
27 28 29 30


def convolution_net(data, label, input_dim, class_dim=2, emb_dim=32,
                    hid_dim=32):
31 32
    emb = fluid.layers.embedding(
        input=data, size=[input_dim, emb_dim], is_sparse=True)
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
    conv_3 = fluid.nets.sequence_conv_pool(
        input=emb,
        num_filters=hid_dim,
        filter_size=3,
        act="tanh",
        pool_type="sqrt")
    conv_4 = fluid.nets.sequence_conv_pool(
        input=emb,
        num_filters=hid_dim,
        filter_size=4,
        act="tanh",
        pool_type="sqrt")
    prediction = fluid.layers.fc(input=[conv_3, conv_4],
                                 size=class_dim,
                                 act="softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
Y
Yu Yang 已提交
49
    avg_cost = fluid.layers.mean(cost)
50
    accuracy = fluid.layers.accuracy(input=prediction, label=label)
51
    return avg_cost, accuracy, prediction
Q
QI JUN 已提交
52 53


Y
Yu Yang 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
def dyn_rnn_lstm(data, label, input_dim, class_dim=2, emb_dim=32,
                 lstm_size=128):
    emb = fluid.layers.embedding(
        input=data, size=[input_dim, emb_dim], is_sparse=True)
    sentence = fluid.layers.fc(input=emb, size=lstm_size, act='tanh')

    rnn = fluid.layers.DynamicRNN()
    with rnn.block():
        word = rnn.step_input(sentence)
        prev_hidden = rnn.memory(value=0.0, shape=[lstm_size])
        prev_cell = rnn.memory(value=0.0, shape=[lstm_size])

        def gate_common(ipt, hidden, size):
            gate0 = fluid.layers.fc(input=ipt, size=size, bias_attr=True)
            gate1 = fluid.layers.fc(input=hidden, size=size, bias_attr=False)
            return gate0 + gate1

        forget_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
                                                         lstm_size))
        input_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
                                                        lstm_size))
        output_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
                                                         lstm_size))
        cell_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
                                                       lstm_size))

        cell = forget_gate * prev_cell + input_gate * cell_gate
        hidden = output_gate * fluid.layers.tanh(x=cell)
        rnn.update_memory(prev_cell, cell)
        rnn.update_memory(prev_hidden, hidden)
        rnn.output(hidden)

    last = fluid.layers.sequence_last_step(rnn())
    prediction = fluid.layers.fc(input=last, size=class_dim, act="softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
Y
Yu Yang 已提交
89
    avg_cost = fluid.layers.mean(cost)
Y
Yu Yang 已提交
90 91 92 93
    accuracy = fluid.layers.accuracy(input=prediction, label=label)
    return avg_cost, accuracy, prediction


Y
Yu Yang 已提交
94 95 96
def stacked_lstm_net(data,
                     label,
                     input_dim,
Q
QI JUN 已提交
97 98 99 100 101 102
                     class_dim=2,
                     emb_dim=128,
                     hid_dim=512,
                     stacked_num=3):
    assert stacked_num % 2 == 1

103 104
    emb = fluid.layers.embedding(
        input=data, size=[input_dim, emb_dim], is_sparse=True)
Q
QI JUN 已提交
105 106 107
    # add bias attr

    # TODO(qijun) linear act
108 109
    fc1 = fluid.layers.fc(input=emb, size=hid_dim)
    lstm1, cell1 = fluid.layers.dynamic_lstm(input=fc1, size=hid_dim)
Q
QI JUN 已提交
110 111 112 113

    inputs = [fc1, lstm1]

    for i in range(2, stacked_num + 1):
114 115
        fc = fluid.layers.fc(input=inputs, size=hid_dim)
        lstm, cell = fluid.layers.dynamic_lstm(
Q
QI JUN 已提交
116 117 118
            input=fc, size=hid_dim, is_reverse=(i % 2) == 0)
        inputs = [fc, lstm]

119 120
    fc_last = fluid.layers.sequence_pool(input=inputs[0], pool_type='max')
    lstm_last = fluid.layers.sequence_pool(input=inputs[1], pool_type='max')
Q
QI JUN 已提交
121

122 123 124 125
    prediction = fluid.layers.fc(input=[fc_last, lstm_last],
                                 size=class_dim,
                                 act='softmax')
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
Y
Yu Yang 已提交
126
    avg_cost = fluid.layers.mean(cost)
127
    accuracy = fluid.layers.accuracy(input=prediction, label=label)
128
    return avg_cost, accuracy, prediction
Q
QI JUN 已提交
129

130

武毅 已提交
131 132 133 134 135 136
def train(word_dict,
          net_method,
          use_cuda,
          parallel=False,
          save_dirname=None,
          is_local=True):
137 138
    BATCH_SIZE = 128
    PASS_NUM = 5
Q
QI JUN 已提交
139 140 141
    dict_dim = len(word_dict)
    class_dim = 2

Y
Yu Yang 已提交
142 143 144
    data = fluid.layers.data(
        name="words", shape=[1], dtype="int64", lod_level=1)
    label = fluid.layers.data(name="label", shape=[1], dtype="int64")
145 146 147 148 149

    if not parallel:
        cost, acc_out, prediction = net_method(
            data, label, input_dim=dict_dim, class_dim=class_dim)
    else:
150
        places = get_places()
Q
qingqing01 已提交
151
        pd = ParallelDo(places)
152 153 154 155 156 157 158 159 160 161
        with pd.do():
            cost, acc, _ = net_method(
                pd.read_input(data),
                pd.read_input(label),
                input_dim=dict_dim,
                class_dim=class_dim)
            pd.write_output(cost)
            pd.write_output(acc)

        cost, acc = pd()
Y
Yu Yang 已提交
162 163
        cost = fluid.layers.mean(cost)
        acc_out = fluid.layers.mean(acc)
164 165 166 167
        prediction = None
        assert save_dirname is None

    adagrad = fluid.optimizer.Adagrad(learning_rate=0.002)
W
Wu Yi 已提交
168
    adagrad.minimize(cost)
Q
QI JUN 已提交
169 170 171 172 173

    train_data = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.imdb.train(word_dict), buf_size=1000),
        batch_size=BATCH_SIZE)
174
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
175
    exe = fluid.Executor(place)
Y
Yu Yang 已提交
176
    feeder = fluid.DataFeeder(feed_list=[data, label], place=place)
Q
QI JUN 已提交
177

武毅 已提交
178 179 180
    def train_loop(main_program):
        exe.run(fluid.default_startup_program())

181
        for pass_id in range(PASS_NUM):
武毅 已提交
182 183 184 185
            for data in train_data():
                cost_val, acc_val = exe.run(main_program,
                                            feed=feeder.feed(data),
                                            fetch_list=[cost, acc_out])
186
                print("cost=" + str(cost_val) + " acc=" + str(acc_val))
武毅 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199
                if cost_val < 0.4 and acc_val > 0.8:
                    if save_dirname is not None:
                        fluid.io.save_inference_model(save_dirname, ["words"],
                                                      prediction, exe)
                    return
                if math.isnan(float(cost_val)):
                    sys.exit("got NaN loss, training failed.")
        raise AssertionError("Cost is too large for {0}".format(
            net_method.__name__))

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
200 201
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
202 203 204 205
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
206
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
207
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
208 209
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
210
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
211
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
212 213 214 215 216 217 218 219
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
220 221


L
Liu Yiqun 已提交
222
def infer(word_dict, use_cuda, save_dirname=None):
223 224 225 226 227 228
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

229 230 231 232 233 234 235 236 237 238 239
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

        word_dict_len = len(word_dict)

K
Kexin Zhao 已提交
240
        # Setup input by creating LoDTensor to represent sequence of words.
241 242
        # Here each word is the basic element of the LoDTensor and the shape of
        # each word (base_shape) should be [1] since it is simply an index to
K
Kexin Zhao 已提交
243
        # look up for the corresponding word vector.
244
        # Suppose the recursive_sequence_lengths info is set to [[3, 4, 2]],
245 246 247 248
        # which has only one level of detail. Then the created LoDTensor will have only
        # one higher level structure (sequence of words, or sentence) than the basic
        # element (word). Hence the LoDTensor will hold data for three sentences of
        # length 3, 4 and 2, respectively.
249 250
        # Note that recursive_sequence_lengths should be a list of lists.
        recursive_seq_lens = [[3, 4, 2]]
K
Kexin Zhao 已提交
251 252
        base_shape = [1]
        # The range of random integers is [low, high]
K
Kexin Zhao 已提交
253
        tensor_words = fluid.create_random_int_lodtensor(
254 255 256 257 258
            recursive_seq_lens,
            base_shape,
            place,
            low=0,
            high=word_dict_len - 1)
259 260 261 262 263 264 265 266

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        assert feed_target_names[0] == "words"
        results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_words},
                          fetch_list=fetch_targets,
                          return_numpy=False)
267
        print(results[0].recursive_sequence_lengths())
268
        np_data = np.array(results[0])
269 270
        print("Inference Shape: ", np_data.shape)
        print("Inference results: ", np_data)
271 272


273
def main(word_dict, net_method, use_cuda, parallel=False, save_dirname=None):
274 275 276
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

277 278 279 280 281 282
    train(
        word_dict,
        net_method,
        use_cuda,
        parallel=parallel,
        save_dirname=save_dirname)
283
    infer(word_dict, use_cuda, save_dirname)
284 285


286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
class TestUnderstandSentiment(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.word_dict = paddle.dataset.imdb.word_dict()

    @contextlib.contextmanager
    def new_program_scope(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
                yield

    def test_conv_cpu(self):
        with self.new_program_scope():
302 303 304 305
            main(
                self.word_dict,
                net_method=convolution_net,
                use_cuda=False,
306
                save_dirname="understand_sentiment_conv.inference.model")
307

308 309 310 311 312 313 314 315 316
    def test_conv_cpu_parallel(self):
        with self.new_program_scope():
            main(
                self.word_dict,
                net_method=convolution_net,
                use_cuda=False,
                parallel=True)

    @unittest.skip(reason="make CI faster")
317 318
    def test_stacked_lstm_cpu(self):
        with self.new_program_scope():
319 320 321 322 323
            main(
                self.word_dict,
                net_method=stacked_lstm_net,
                use_cuda=False,
                save_dirname="understand_sentiment_stacked_lstm.inference.model")
324

325 326 327 328 329 330 331 332
    def test_stacked_lstm_cpu_parallel(self):
        with self.new_program_scope():
            main(
                self.word_dict,
                net_method=stacked_lstm_net,
                use_cuda=False,
                parallel=True)

333 334
    def test_conv_gpu(self):
        with self.new_program_scope():
335 336 337 338
            main(
                self.word_dict,
                net_method=convolution_net,
                use_cuda=True,
339
                save_dirname="understand_sentiment_conv.inference.model")
340 341 342 343 344 345 346 347

    def test_conv_gpu_parallel(self):
        with self.new_program_scope():
            main(
                self.word_dict,
                net_method=convolution_net,
                use_cuda=True,
                parallel=True)
348

349
    @unittest.skip(reason="make CI faster")
350 351
    def test_stacked_lstm_gpu(self):
        with self.new_program_scope():
352 353 354 355 356
            main(
                self.word_dict,
                net_method=stacked_lstm_net,
                use_cuda=True,
                save_dirname="understand_sentiment_stacked_lstm.inference.model")
Q
QI JUN 已提交
357

358 359 360 361 362 363 364 365
    def test_stacked_lstm_gpu_parallel(self):
        with self.new_program_scope():
            main(
                self.word_dict,
                net_method=stacked_lstm_net,
                use_cuda=True,
                parallel=True)

Y
Yu Yang 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
    @unittest.skip(reason='make CI faster')
    def test_dynrnn_lstm_gpu(self):
        with self.new_program_scope():
            main(
                self.word_dict,
                net_method=dyn_rnn_lstm,
                use_cuda=True,
                parallel=False)

    def test_dynrnn_lstm_gpu_parallel(self):
        with self.new_program_scope():
            main(
                self.word_dict,
                net_method=dyn_rnn_lstm,
                use_cuda=True,
                parallel=True)

Q
QI JUN 已提交
383 384

if __name__ == '__main__':
385
    unittest.main()