notest_understand_sentiment.py 14.0 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15 16
from __future__ import print_function

17
from paddle.fluid.layers.device import get_places
18
import unittest
19
import paddle.fluid as fluid
20
import paddle
21
import contextlib
22
import math
23
import numpy as np
24
import sys
武毅 已提交
25
import os
26 27 28 29


def convolution_net(data, label, input_dim, class_dim=2, emb_dim=32,
                    hid_dim=32):
30 31
    emb = fluid.layers.embedding(
        input=data, size=[input_dim, emb_dim], is_sparse=True)
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    conv_3 = fluid.nets.sequence_conv_pool(
        input=emb,
        num_filters=hid_dim,
        filter_size=3,
        act="tanh",
        pool_type="sqrt")
    conv_4 = fluid.nets.sequence_conv_pool(
        input=emb,
        num_filters=hid_dim,
        filter_size=4,
        act="tanh",
        pool_type="sqrt")
    prediction = fluid.layers.fc(input=[conv_3, conv_4],
                                 size=class_dim,
                                 act="softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
Y
Yu Yang 已提交
48
    avg_cost = fluid.layers.mean(cost)
49
    accuracy = fluid.layers.accuracy(input=prediction, label=label)
50
    return avg_cost, accuracy, prediction
Q
QI JUN 已提交
51 52


Y
Yu Yang 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
def dyn_rnn_lstm(data, label, input_dim, class_dim=2, emb_dim=32,
                 lstm_size=128):
    emb = fluid.layers.embedding(
        input=data, size=[input_dim, emb_dim], is_sparse=True)
    sentence = fluid.layers.fc(input=emb, size=lstm_size, act='tanh')

    rnn = fluid.layers.DynamicRNN()
    with rnn.block():
        word = rnn.step_input(sentence)
        prev_hidden = rnn.memory(value=0.0, shape=[lstm_size])
        prev_cell = rnn.memory(value=0.0, shape=[lstm_size])

        def gate_common(ipt, hidden, size):
            gate0 = fluid.layers.fc(input=ipt, size=size, bias_attr=True)
            gate1 = fluid.layers.fc(input=hidden, size=size, bias_attr=False)
            return gate0 + gate1

        forget_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
                                                         lstm_size))
        input_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
                                                        lstm_size))
        output_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
                                                         lstm_size))
        cell_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
                                                       lstm_size))

        cell = forget_gate * prev_cell + input_gate * cell_gate
        hidden = output_gate * fluid.layers.tanh(x=cell)
        rnn.update_memory(prev_cell, cell)
        rnn.update_memory(prev_hidden, hidden)
        rnn.output(hidden)

    last = fluid.layers.sequence_last_step(rnn())
    prediction = fluid.layers.fc(input=last, size=class_dim, act="softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
Y
Yu Yang 已提交
88
    avg_cost = fluid.layers.mean(cost)
Y
Yu Yang 已提交
89 90 91 92
    accuracy = fluid.layers.accuracy(input=prediction, label=label)
    return avg_cost, accuracy, prediction


Y
Yu Yang 已提交
93 94 95
def stacked_lstm_net(data,
                     label,
                     input_dim,
Q
QI JUN 已提交
96 97 98 99 100 101
                     class_dim=2,
                     emb_dim=128,
                     hid_dim=512,
                     stacked_num=3):
    assert stacked_num % 2 == 1

102 103
    emb = fluid.layers.embedding(
        input=data, size=[input_dim, emb_dim], is_sparse=True)
Q
QI JUN 已提交
104 105 106
    # add bias attr

    # TODO(qijun) linear act
107 108
    fc1 = fluid.layers.fc(input=emb, size=hid_dim)
    lstm1, cell1 = fluid.layers.dynamic_lstm(input=fc1, size=hid_dim)
Q
QI JUN 已提交
109 110 111 112

    inputs = [fc1, lstm1]

    for i in range(2, stacked_num + 1):
113 114
        fc = fluid.layers.fc(input=inputs, size=hid_dim)
        lstm, cell = fluid.layers.dynamic_lstm(
Q
QI JUN 已提交
115 116 117
            input=fc, size=hid_dim, is_reverse=(i % 2) == 0)
        inputs = [fc, lstm]

118 119
    fc_last = fluid.layers.sequence_pool(input=inputs[0], pool_type='max')
    lstm_last = fluid.layers.sequence_pool(input=inputs[1], pool_type='max')
Q
QI JUN 已提交
120

121 122 123 124
    prediction = fluid.layers.fc(input=[fc_last, lstm_last],
                                 size=class_dim,
                                 act='softmax')
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
Y
Yu Yang 已提交
125
    avg_cost = fluid.layers.mean(cost)
126
    accuracy = fluid.layers.accuracy(input=prediction, label=label)
127
    return avg_cost, accuracy, prediction
Q
QI JUN 已提交
128

129

武毅 已提交
130 131 132 133 134 135
def train(word_dict,
          net_method,
          use_cuda,
          parallel=False,
          save_dirname=None,
          is_local=True):
136 137
    BATCH_SIZE = 128
    PASS_NUM = 5
Q
QI JUN 已提交
138 139 140
    dict_dim = len(word_dict)
    class_dim = 2

Y
Yu Yang 已提交
141 142 143
    data = fluid.layers.data(
        name="words", shape=[1], dtype="int64", lod_level=1)
    label = fluid.layers.data(name="label", shape=[1], dtype="int64")
144 145 146 147 148

    if not parallel:
        cost, acc_out, prediction = net_method(
            data, label, input_dim=dict_dim, class_dim=class_dim)
    else:
149
        places = get_places()
150 151 152 153 154 155 156 157 158 159 160
        pd = fluid.layers.ParallelDo(places)
        with pd.do():
            cost, acc, _ = net_method(
                pd.read_input(data),
                pd.read_input(label),
                input_dim=dict_dim,
                class_dim=class_dim)
            pd.write_output(cost)
            pd.write_output(acc)

        cost, acc = pd()
Y
Yu Yang 已提交
161 162
        cost = fluid.layers.mean(cost)
        acc_out = fluid.layers.mean(acc)
163 164 165 166
        prediction = None
        assert save_dirname is None

    adagrad = fluid.optimizer.Adagrad(learning_rate=0.002)
W
Wu Yi 已提交
167
    adagrad.minimize(cost)
Q
QI JUN 已提交
168 169 170 171 172

    train_data = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.imdb.train(word_dict), buf_size=1000),
        batch_size=BATCH_SIZE)
173
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
174
    exe = fluid.Executor(place)
Y
Yu Yang 已提交
175
    feeder = fluid.DataFeeder(feed_list=[data, label], place=place)
Q
QI JUN 已提交
176

武毅 已提交
177 178 179
    def train_loop(main_program):
        exe.run(fluid.default_startup_program())

180
        for pass_id in range(PASS_NUM):
武毅 已提交
181 182 183 184
            for data in train_data():
                cost_val, acc_val = exe.run(main_program,
                                            feed=feeder.feed(data),
                                            fetch_list=[cost, acc_out])
185
                print("cost=" + str(cost_val) + " acc=" + str(acc_val))
武毅 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198
                if cost_val < 0.4 and acc_val > 0.8:
                    if save_dirname is not None:
                        fluid.io.save_inference_model(save_dirname, ["words"],
                                                      prediction, exe)
                    return
                if math.isnan(float(cost_val)):
                    sys.exit("got NaN loss, training failed.")
        raise AssertionError("Cost is too large for {0}".format(
            net_method.__name__))

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
199 200
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
201 202 203 204
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
205
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
206
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
207 208
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
209
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
210
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
211 212 213 214 215 216 217 218
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
219 220


L
Liu Yiqun 已提交
221
def infer(word_dict, use_cuda, save_dirname=None):
222 223 224 225 226 227
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

228 229 230 231 232 233 234 235 236 237 238
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

        word_dict_len = len(word_dict)

K
Kexin Zhao 已提交
239
        # Setup input by creating LoDTensor to represent sequence of words.
240 241
        # Here each word is the basic element of the LoDTensor and the shape of
        # each word (base_shape) should be [1] since it is simply an index to
K
Kexin Zhao 已提交
242
        # look up for the corresponding word vector.
243
        # Suppose the recursive_sequence_lengths info is set to [[3, 4, 2]],
244 245 246 247
        # which has only one level of detail. Then the created LoDTensor will have only
        # one higher level structure (sequence of words, or sentence) than the basic
        # element (word). Hence the LoDTensor will hold data for three sentences of
        # length 3, 4 and 2, respectively.
248 249
        # Note that recursive_sequence_lengths should be a list of lists.
        recursive_seq_lens = [[3, 4, 2]]
K
Kexin Zhao 已提交
250 251
        base_shape = [1]
        # The range of random integers is [low, high]
K
Kexin Zhao 已提交
252
        tensor_words = fluid.create_random_int_lodtensor(
253 254 255 256 257
            recursive_seq_lens,
            base_shape,
            place,
            low=0,
            high=word_dict_len - 1)
258 259 260 261 262 263 264 265

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        assert feed_target_names[0] == "words"
        results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_words},
                          fetch_list=fetch_targets,
                          return_numpy=False)
266
        print(results[0].recursive_sequence_lengths())
267
        np_data = np.array(results[0])
268 269
        print("Inference Shape: ", np_data.shape)
        print("Inference results: ", np_data)
270 271


272
def main(word_dict, net_method, use_cuda, parallel=False, save_dirname=None):
273 274 275
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

276 277 278 279 280 281
    train(
        word_dict,
        net_method,
        use_cuda,
        parallel=parallel,
        save_dirname=save_dirname)
282
    infer(word_dict, use_cuda, save_dirname)
283 284


285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
class TestUnderstandSentiment(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.word_dict = paddle.dataset.imdb.word_dict()

    @contextlib.contextmanager
    def new_program_scope(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
                yield

    def test_conv_cpu(self):
        with self.new_program_scope():
301 302 303 304
            main(
                self.word_dict,
                net_method=convolution_net,
                use_cuda=False,
305
                save_dirname="understand_sentiment_conv.inference.model")
306

307 308 309 310 311 312 313 314 315
    def test_conv_cpu_parallel(self):
        with self.new_program_scope():
            main(
                self.word_dict,
                net_method=convolution_net,
                use_cuda=False,
                parallel=True)

    @unittest.skip(reason="make CI faster")
316 317
    def test_stacked_lstm_cpu(self):
        with self.new_program_scope():
318 319 320 321 322
            main(
                self.word_dict,
                net_method=stacked_lstm_net,
                use_cuda=False,
                save_dirname="understand_sentiment_stacked_lstm.inference.model")
323

324 325 326 327 328 329 330 331
    def test_stacked_lstm_cpu_parallel(self):
        with self.new_program_scope():
            main(
                self.word_dict,
                net_method=stacked_lstm_net,
                use_cuda=False,
                parallel=True)

332 333
    def test_conv_gpu(self):
        with self.new_program_scope():
334 335 336 337
            main(
                self.word_dict,
                net_method=convolution_net,
                use_cuda=True,
338
                save_dirname="understand_sentiment_conv.inference.model")
339 340 341 342 343 344 345 346

    def test_conv_gpu_parallel(self):
        with self.new_program_scope():
            main(
                self.word_dict,
                net_method=convolution_net,
                use_cuda=True,
                parallel=True)
347

348
    @unittest.skip(reason="make CI faster")
349 350
    def test_stacked_lstm_gpu(self):
        with self.new_program_scope():
351 352 353 354 355
            main(
                self.word_dict,
                net_method=stacked_lstm_net,
                use_cuda=True,
                save_dirname="understand_sentiment_stacked_lstm.inference.model")
Q
QI JUN 已提交
356

357 358 359 360 361 362 363 364
    def test_stacked_lstm_gpu_parallel(self):
        with self.new_program_scope():
            main(
                self.word_dict,
                net_method=stacked_lstm_net,
                use_cuda=True,
                parallel=True)

Y
Yu Yang 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
    @unittest.skip(reason='make CI faster')
    def test_dynrnn_lstm_gpu(self):
        with self.new_program_scope():
            main(
                self.word_dict,
                net_method=dyn_rnn_lstm,
                use_cuda=True,
                parallel=False)

    def test_dynrnn_lstm_gpu_parallel(self):
        with self.new_program_scope():
            main(
                self.word_dict,
                net_method=dyn_rnn_lstm,
                use_cuda=True,
                parallel=True)

Q
QI JUN 已提交
382 383

if __name__ == '__main__':
384
    unittest.main()