fused_elemwise_activation_op.cc 13.2 KB
Newer Older
C
chengduo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/fused_elemwise_activation_op.h"
C
chengduo 已提交
16 17 18 19

namespace paddle {
namespace operators {

C
chengduo 已提交
20
bool IsUnaryCompound(const std::vector<std::string> &functor_list) {
21 22 23 24 25 26 27
  PADDLE_ENFORCE_EQ(functor_list.size(), 2);
  static std::unordered_set<std::string> binary_fun = {
      "elementwise_add", "elementwise_mul", "elementwise_add_grad",
      "elementwise_mul_grad"};
  return binary_fun.count(functor_list[1]) != 0;
}

C
chengduo 已提交
28 29 30 31 32 33 34 35 36 37 38
bool HasInPlaceUnary(const std::vector<std::string> &functor_list) {
  PADDLE_ENFORCE_EQ(functor_list.size(), 2);
  static std::unordered_set<std::string> InplaceOpSet = {"relu", "relu_grad"};
  bool is_in_place = false;
  for (auto &func_name : functor_list) {
    is_in_place |= (InplaceOpSet.count(func_name) == 1);
  }
  return is_in_place;
}

bool InputXCanBeAbsent(const std::vector<std::string> &functor_list) {
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
  PADDLE_ENFORCE_EQ(functor_list.size(), 2);
  static std::unordered_set<std::string> binary_fun = {"elementwise_add_grad"};
  return binary_fun.count(functor_list[0]) != 0 ||
         binary_fun.count(functor_list[1]) != 0;
}

/*
 * Whether the compound function is supported.
 * For Unary(Binary(X, Y)), the intermediate_out's shape is the same the final
 * out.
 */
static bool IsSupportedCompound(const std::vector<std::string> &functors) {
  static std::unordered_set<std::string> unary_fun = {"scale", "relu"};
  static std::unordered_set<std::string> binary_fun = {"elementwise_add",
                                                       "elementwise_mul"};

  std::string unary_fun_str;
  if (binary_fun.count(functors[0])) {
    unary_fun_str = functors[1];
  } else if (binary_fun.count(functors[1])) {
    unary_fun_str = functors[0];
  } else {
    PADDLE_THROW("%s and %s are not included in fused_list.", functors[0],
                 functors[1]);
  }
  PADDLE_ENFORCE_EQ(unary_fun.count(unary_fun_str), 1,
                    "%s is not included in fused_list.", unary_fun_str);
  return true;
}

C
chengduo 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
class FusedElemwiseActivationOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(
        ctx->HasInput("X"),
        "Input(X) of FusedElemwiseActivationOp op should not be null.");
    PADDLE_ENFORCE(
        ctx->HasInput("Y"),
        "Input(Y) of FusedElemwiseActivationOp op should not be null.");
    PADDLE_ENFORCE(
        ctx->HasOutput("Out"),
        "Output(Out) of FusedElemwiseActivationOp op should not be null.");

    auto x_dim = ctx->GetInputDim("X");
    auto y_dim = ctx->GetInputDim("Y");

87 88
    // Whether the shape of Y is a continuous subsequence of X,
    // For more information please refer to the op's introduction.
C
chengduo 已提交
89
    bool bcast_y = IsBcastY(x_dim, y_dim);
90 91 92 93

    auto &out_dim = bcast_y ? x_dim : y_dim;
    std::string out_lod = bcast_y ? "X" : "Y";

C
chengduo 已提交
94
    if (ctx->Attrs().Get<bool>("save_intermediate_out")) {
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
      PADDLE_ENFORCE(ctx->HasOutput("IntermediateOut"),
                     "Output(IntermediateOut) of FusedElemwiseActivationOp "
                     "should not be null.");

      if (IsUnaryCompound(
              ctx->Attrs().Get<std::vector<std::string>>("functor_list"))) {
        // for Unary(Binary(X, Y)), the shape and lod of out and
        // intermediate_out are the same.
        ctx->SetOutputDim("IntermediateOut", out_dim);
        // set the lod of intermediate_out
        ctx->ShareLoD(out_lod, /*->*/ "IntermediateOut");
      } else {
        // for Binary(X, Unary(Y)), the shape and lod of Y and
        // intermediate_out are the same.
        ctx->SetOutputDim("IntermediateOut", y_dim);
        // set the lod of intermediate_out
        ctx->ShareLoD("Y", /*->*/ "IntermediateOut");
      }
    }
    ctx->SetOutputDim("Out", out_dim);
    ctx->ShareLoD(out_lod, /*->*/ "Out");
C
chengduo 已提交
116 117
  }

C
chengduo 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131
  static bool IsBcastY(const framework::DDim &x_dim,
                       const framework::DDim &y_dim) {
    bool bcast_y = x_dim.size() >= y_dim.size();
    if (x_dim.size() == y_dim.size()) {
      for (int i = 0; i < x_dim.size(); ++i) {
        if (x_dim[i] < y_dim[i]) {
          bcast_y = false;
          break;
        }
      }
    }
    return bcast_y;
  }

C
chengduo 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    PADDLE_ENFORCE_EQ(ctx.Input<framework::Tensor>("X")->type(),
                      ctx.Input<framework::Tensor>("Y")->type(),
                      "The element's type of input should be the same.");
    auto input_data_type =
        framework::ToDataType(ctx.Input<framework::Tensor>("X")->type());
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

class FusedElemwiseActivationMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
147 148 149 150 151 152 153 154 155 156 157 158 159
    AddInput(
        "X",
        "(Tensor) The input tensor of fused_elemwise_activation operator.");
    AddInput(
        "Y",
        "(Tensor) The input tensor of fused_elemwise_activation operator.");
    AddOutput("Out",
              "vector<Tensor> The output tensor of fused_elemwise_activation "
              "operator.");
    AddOutput("IntermediateOut",
              "Tensor The IntermediateOut tensor of fused_elemwise_activation "
              "operator.")
        .AsIntermediate();
C
chengduo 已提交
160 161 162 163 164 165
    AddAttr<int>("axis",
                 "axis is used by elementwise_op, the default value is -1.")
        .SetDefault(-1);
    AddAttr<float>("scale",
                   "scale is used by scale_op, the default value is 0.0.")
        .SetDefault(0.0);
C
chengduo 已提交
166
    AddAttr<bool>("save_intermediate_out",
167 168
                  "Whether to save the intermediate_out.")
        .SetDefault(false);
C
chengduo 已提交
169 170 171
    AddAttr<std::vector<std::string>>("functor_list",
                                      "The functors that should be fused.")
        .AddCustomChecker([&](const std::vector<std::string> &functor_list) {
172
          PADDLE_ENFORCE(IsSupportedCompound(functor_list));
C
chengduo 已提交
173 174 175 176 177 178 179 180 181 182 183
        });

    AddComment(R"DOC(
FusedElemwiseActivation Operator.

At present, FusedElemwiseActivation only supports Two kinds of compound
operators (elementwise_op and activation_op):

    Z = Binary(X, Unary(Y))
    Z = Unary(Binary(X, Y))

184
There are two cases for this operator:
C
chengduo 已提交
185

186 187
1. The shape of $Y$ and $X$ is the same.
2. The shape of $Y$ is a continuous subsequence of $X$ or the shape of $X$ is a continuous subsequence of $Y$.
C
chengduo 已提交
188

189
For case 2 (assume that the shape of $Y$ is a continuous subsequence of $X$ ):
C
chengduo 已提交
190

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
1. Broadcast $Y$ to match the shape of $X$, where $axis$ is the start dimension index
   for broadcasting $Y$ onto $X$.
2. If $axis$ is -1 (default), $axis = rank(X) - rank(Y)$.
3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of
   subsequence, such as shape(Y) = (2, 1) => (2).

For example:

  .. code-block:: python

    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
    shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0


The inputs $X$ and $Y$ can carry the different LoD information.
But the output only shares the LoD information with the one whose shape is the same with Out.
The attributions of activation_op can be get from fused_elemwise_activation_op's.
The functor_list records the functions to be fused, for example
["scale", "elementwise_add"].

)DOC");
C
chengduo 已提交
216 217 218 219 220 221 222 223 224 225
  }
};

class FusedElemwiseActivationGradMaker
    : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
C
chengduo 已提交
226 227
    auto *grad_op = new framework::OpDesc();
    grad_op->SetType(this->ForwardOpType() + "_grad");
C
chengduo 已提交
228 229

    for (auto &input_param : this->InputNames()) {
C
chengduo 已提交
230 231 232
      grad_op->SetInput(input_param, this->Input(input_param));
      grad_op->SetOutput(framework::GradVarName(input_param),
                         this->InputGrad(input_param, true));
C
chengduo 已提交
233 234
    }

C
chengduo 已提交
235 236
    grad_op->SetInput("Out", this->Output("Out"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
237

C
chengduo 已提交
238
    grad_op->SetAttrMap(this->Attrs());
C
chengduo 已提交
239 240

    std::vector<std::string> functor_names =
C
chengduo 已提交
241 242
        boost::get<std::vector<std::string>>(grad_op->GetAttr("functor_list"));

C
chengduo 已提交
243 244
    functor_names[0] += "_grad";
    functor_names[1] += "_grad";
C
chengduo 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257
    grad_op->SetAttr("functor_list", functor_names);

    if (boost::get<bool>(grad_op->GetAttr("save_intermediate_out"))) {
      PADDLE_ENFORCE_NE(Output("IntermediateOut").size(), 0);
      grad_op->SetInput("IntermediateOut", this->Output("IntermediateOut"));
      grad_op->SetOutput(framework::GradVarName("IntermediateOut"),
                         this->OutputGrad("IntermediateOut"));
    } else {
      grad_op->SetInput("IntermediateOut", {});
      grad_op->SetOutput(framework::GradVarName("IntermediateOut"), {});
    }

    return std::unique_ptr<framework::OpDesc>(grad_op);
C
chengduo 已提交
258 259 260 261 262 263 264 265 266
  }
};

class FusedElemwiseActivationOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
267
                   "Input(Out@Grad) should not be null");
C
chengduo 已提交
268 269 270 271 272

    auto functor_list =
        ctx->Attrs().Get<std::vector<std::string>>("functor_list");

    if (ctx->Attrs().Get<bool>("save_intermediate_out")) {
273 274 275
      PADDLE_ENFORCE(ctx->HasInput("IntermediateOut"),
                     "Input(IntermediateOut) should not be null");
    } else {
C
chengduo 已提交
276 277 278
      if (!InputXCanBeAbsent(functor_list)) {
        PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
      }
279
    }
C
chengduo 已提交
280 281 282

    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
C
chengduo 已提交
283
    auto inter_grad_name = framework::GradVarName("IntermediateOut");
284

C
chengduo 已提交
285
    if (ctx->HasOutput(x_grad_name)) {
286 287 288 289 290 291
      if (ctx->HasInputs("X")) {
        ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
        ctx->ShareLoD("X", x_grad_name);
      } else {
        // Currently, only when Binary is elementwise_add or elementwise_sub,
        // the "X" could be absent.
C
chengduo 已提交
292
        PADDLE_ENFORCE(InputXCanBeAbsent(functor_list),
293 294 295
                       "Only when BinaryFunctor is elementwise_add, the 'X' "
                       "could be absent.");

C
chengduo 已提交
296 297
        // Node: If "X" is absence, the shape of Y should be a continuous
        // subsequence of X, otherwise, we could not infer the shape of dx.
298 299 300 301 302

        ctx->SetOutputDim(x_grad_name,
                          ctx->GetInputDim(framework::GradVarName("Out")));
        ctx->ShareLoD(framework::GradVarName("Out"), x_grad_name);
      }
C
chengduo 已提交
303
    }
C
chengduo 已提交
304

C
chengduo 已提交
305
    if (ctx->HasOutput(y_grad_name)) {
306 307 308
      PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
      ctx->SetOutputDim(y_grad_name, ctx->GetInputDim("Y"));
      ctx->ShareLoD("Y", y_grad_name);
C
chengduo 已提交
309
    }
C
chengduo 已提交
310 311 312 313 314 315 316 317 318 319 320 321

    if (ctx->HasOutput(inter_grad_name)) {
      // For Unary(Binary(X, Y)), IntermediateOut should not be empty.
      if (IsUnaryCompound(functor_list)) {
        ctx->SetOutputDim(inter_grad_name,
                          ctx->GetInputDim(framework::GradVarName("Out")));
        ctx->ShareLoD(framework::GradVarName("Out"), inter_grad_name);
      } else {
        ctx->SetOutputDim(inter_grad_name, ctx->GetInputDim("Y"));
        ctx->ShareLoD("Y", inter_grad_name);
      }
    }
C
chengduo 已提交
322 323 324 325 326
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
327
    auto input_data_type_index = ctx.Input<framework::Tensor>("Y")->type();
C
chengduo 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
    auto input_data_type = framework::ToDataType(input_data_type_index);
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(fused_elemwise_activation, ops::FusedElemwiseActivationOp,
                  ops::FusedElemwiseActivationMaker,
                  ops::FusedElemwiseActivationGradMaker);
REGISTER_OPERATOR(fused_elemwise_activation_grad,
                  ops::FusedElemwiseActivationOpGrad);

REGISTER_OP_CPU_KERNEL(
    fused_elemwise_activation,
    ops::FusedElemwiseActivationKernel<paddle::platform::CPUDeviceContext,
                                       float>,
    ops::FusedElemwiseActivationKernel<paddle::platform::CPUDeviceContext,
                                       double>);

REGISTER_OP_CPU_KERNEL(
    fused_elemwise_activation_grad,
    ops::FusedElemwiseActivationGradKernel<paddle::platform::CPUDeviceContext,
                                           float>,
    ops::FusedElemwiseActivationGradKernel<paddle::platform::CPUDeviceContext,
                                           double>);