fused_elemwise_activation_op.cc 13.1 KB
Newer Older
C
chengduo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/fused_elemwise_activation_op.h"
C
chengduo 已提交
16 17 18 19 20 21
#include <string>
#include <vector>

namespace paddle {
namespace operators {

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
/*
 * Whether the compound function is Unary(Binary(X, Y)).
 * For Unary(Binary(X, Y)), the intermediate_out's shape is the same the final
 * out.
 */
static bool IsUnaryCompound(const std::vector<std::string> &functor_list) {
  PADDLE_ENFORCE_EQ(functor_list.size(), 2);
  static std::unordered_set<std::string> binary_fun = {
      "elementwise_add", "elementwise_mul", "elementwise_add_grad",
      "elementwise_mul_grad"};
  return binary_fun.count(functor_list[1]) != 0;
}

/*
 * Whether the Input(X) could be absent.
 */
static bool InputXCanBeAbsent(const std::vector<std::string> &functor_list) {
  PADDLE_ENFORCE_EQ(functor_list.size(), 2);
  static std::unordered_set<std::string> binary_fun = {"elementwise_add_grad"};
  return binary_fun.count(functor_list[0]) != 0 ||
         binary_fun.count(functor_list[1]) != 0;
}

/*
 * Whether the compound function is supported.
 * For Unary(Binary(X, Y)), the intermediate_out's shape is the same the final
 * out.
 */
static bool IsSupportedCompound(const std::vector<std::string> &functors) {
  static std::unordered_set<std::string> unary_fun = {"scale", "relu"};
  static std::unordered_set<std::string> binary_fun = {"elementwise_add",
                                                       "elementwise_mul"};

  std::string unary_fun_str;
  if (binary_fun.count(functors[0])) {
    unary_fun_str = functors[1];
  } else if (binary_fun.count(functors[1])) {
    unary_fun_str = functors[0];
  } else {
    PADDLE_THROW("%s and %s are not included in fused_list.", functors[0],
                 functors[1]);
  }
  PADDLE_ENFORCE_EQ(unary_fun.count(unary_fun_str), 1,
                    "%s is not included in fused_list.", unary_fun_str);
  return true;
}

C
chengduo 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
class FusedElemwiseActivationOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(
        ctx->HasInput("X"),
        "Input(X) of FusedElemwiseActivationOp op should not be null.");
    PADDLE_ENFORCE(
        ctx->HasInput("Y"),
        "Input(Y) of FusedElemwiseActivationOp op should not be null.");
    PADDLE_ENFORCE(
        ctx->HasOutput("Out"),
        "Output(Out) of FusedElemwiseActivationOp op should not be null.");

    auto x_dim = ctx->GetInputDim("X");
    auto y_dim = ctx->GetInputDim("Y");

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    // Whether the shape of Y is a continuous subsequence of X,
    // For more information please refer to the op's introduction.
    bool bcast_y = x_dim.size() >= y_dim.size();
    if (x_dim.size() == y_dim.size()) {
      for (int i = 0; i < x_dim.size(); ++i) {
        if (x_dim[i] < y_dim[i]) {
          bcast_y = false;
          break;
        }
      }
    }

    auto &out_dim = bcast_y ? x_dim : y_dim;
    std::string out_lod = bcast_y ? "X" : "Y";

    if (ctx->Attrs().Get<bool>("keep_intermediate_value")) {
      PADDLE_ENFORCE(ctx->HasOutput("IntermediateOut"),
                     "Output(IntermediateOut) of FusedElemwiseActivationOp "
                     "should not be null.");

      if (IsUnaryCompound(
              ctx->Attrs().Get<std::vector<std::string>>("functor_list"))) {
        // for Unary(Binary(X, Y)), the shape and lod of out and
        // intermediate_out are the same.
        ctx->SetOutputDim("IntermediateOut", out_dim);
        // set the lod of intermediate_out
        ctx->ShareLoD(out_lod, /*->*/ "IntermediateOut");
      } else {
        // for Binary(X, Unary(Y)), the shape and lod of Y and
        // intermediate_out are the same.
        ctx->SetOutputDim("IntermediateOut", y_dim);
        // set the lod of intermediate_out
        ctx->ShareLoD("Y", /*->*/ "IntermediateOut");
      }
    }
    ctx->SetOutputDim("Out", out_dim);
    ctx->ShareLoD(out_lod, /*->*/ "Out");
C
chengduo 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    PADDLE_ENFORCE_EQ(ctx.Input<framework::Tensor>("X")->type(),
                      ctx.Input<framework::Tensor>("Y")->type(),
                      "The element's type of input should be the same.");
    auto input_data_type =
        framework::ToDataType(ctx.Input<framework::Tensor>("X")->type());
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

class FusedElemwiseActivationMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
141 142 143 144 145 146 147 148 149 150 151 152 153
    AddInput(
        "X",
        "(Tensor) The input tensor of fused_elemwise_activation operator.");
    AddInput(
        "Y",
        "(Tensor) The input tensor of fused_elemwise_activation operator.");
    AddOutput("Out",
              "vector<Tensor> The output tensor of fused_elemwise_activation "
              "operator.");
    AddOutput("IntermediateOut",
              "Tensor The IntermediateOut tensor of fused_elemwise_activation "
              "operator.")
        .AsIntermediate();
C
chengduo 已提交
154 155 156 157 158 159
    AddAttr<int>("axis",
                 "axis is used by elementwise_op, the default value is -1.")
        .SetDefault(-1);
    AddAttr<float>("scale",
                   "scale is used by scale_op, the default value is 0.0.")
        .SetDefault(0.0);
160 161 162 163 164 165 166 167 168
    AddAttr<bool>(
        "recomputation",
        "Whether to recompute the Out."
        "The computation of fused_elemwise_activation_grad has two methods to "
        "get the dx and dy, one is to use the 'Out', and the other is not. "
        "The former method will save the time of recomputing the 'Out', but it "
        "must occupy the memory to store the 'out'. While, the later method "
        "can avoid occupying the memory, but it must recompute the 'Out'. "
        "It is useful for Unary(Binary(X, Y)). The default value is true.")
C
chengduo 已提交
169
        .SetDefault(true);
170 171 172
    AddAttr<bool>("keep_intermediate_value",
                  "Whether to save the intermediate_out.")
        .SetDefault(false);
C
chengduo 已提交
173 174 175
    AddAttr<std::vector<std::string>>("functor_list",
                                      "The functors that should be fused.")
        .AddCustomChecker([&](const std::vector<std::string> &functor_list) {
176
          PADDLE_ENFORCE(IsSupportedCompound(functor_list));
C
chengduo 已提交
177 178 179 180 181 182 183 184 185 186 187
        });

    AddComment(R"DOC(
FusedElemwiseActivation Operator.

At present, FusedElemwiseActivation only supports Two kinds of compound
operators (elementwise_op and activation_op):

    Z = Binary(X, Unary(Y))
    Z = Unary(Binary(X, Y))

188
There are two cases for this operator:
C
chengduo 已提交
189

190 191
1. The shape of $Y$ and $X$ is the same.
2. The shape of $Y$ is a continuous subsequence of $X$ or the shape of $X$ is a continuous subsequence of $Y$.
C
chengduo 已提交
192

193
For case 2 (assume that the shape of $Y$ is a continuous subsequence of $X$ ):
C
chengduo 已提交
194

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
1. Broadcast $Y$ to match the shape of $X$, where $axis$ is the start dimension index
   for broadcasting $Y$ onto $X$.
2. If $axis$ is -1 (default), $axis = rank(X) - rank(Y)$.
3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of
   subsequence, such as shape(Y) = (2, 1) => (2).

For example:

  .. code-block:: python

    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
    shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0


The inputs $X$ and $Y$ can carry the different LoD information.
But the output only shares the LoD information with the one whose shape is the same with Out.
The attributions of activation_op can be get from fused_elemwise_activation_op's.
The functor_list records the functions to be fused, for example
["scale", "elementwise_add"].

)DOC");
C
chengduo 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
  }
};

class FusedElemwiseActivationGradMaker
    : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto *op_desc_ptr = new framework::OpDesc();
    op_desc_ptr->SetType(this->ForwardOpType() + "_grad");

    for (auto &input_param : this->InputNames()) {
      op_desc_ptr->SetInput(input_param, this->Input(input_param));
      op_desc_ptr->SetOutput(framework::GradVarName(input_param),
                             this->InputGrad(input_param, true));
    }

    for (auto &output_param : this->OutputNames()) {
      op_desc_ptr->SetInput(output_param, this->Output(output_param));
      op_desc_ptr->SetInput(framework::GradVarName(output_param),
                            this->OutputGrad(output_param));
    }
244

C
chengduo 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
    op_desc_ptr->SetAttrMap(this->Attrs());

    std::vector<std::string> functor_names =
        boost::get<std::vector<std::string>>(
            op_desc_ptr->GetAttr("functor_list"));
    functor_names[0] += "_grad";
    functor_names[1] += "_grad";
    op_desc_ptr->SetAttr("functor_list", functor_names);
    return std::unique_ptr<framework::OpDesc>(op_desc_ptr);
  }
};

class FusedElemwiseActivationOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
263 264 265 266 267 268 269
                   "Input(Out@Grad) should not be null");
    if (ctx->Attrs().Get<bool>("keep_intermediate_value")) {
      PADDLE_ENFORCE(ctx->HasInput("IntermediateOut"),
                     "Input(IntermediateOut) should not be null");
    } else {
      PADDLE_ENFORCE_EQ(ctx->Inputs(framework::GradVarName("Out")).size(), 1);
    }
C
chengduo 已提交
270

271 272
    auto funtor_list =
        ctx->Attrs().Get<std::vector<std::string>>("functor_list");
C
chengduo 已提交
273 274
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
275

C
chengduo 已提交
276
    if (ctx->HasOutput(x_grad_name)) {
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
      if (ctx->HasInputs("X")) {
        ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
        ctx->ShareLoD("X", x_grad_name);
      } else {
        // Node: If "X" is absence, the shape of Y should be a continuous
        // subsequence of X, if not, we could not infer the shape of dx.

        // Currently, only when Binary is elementwise_add or elementwise_sub,
        // the "X" could be absent.
        PADDLE_ENFORCE(InputXCanBeAbsent(funtor_list),
                       "Only when BinaryFunctor is elementwise_add, the 'X' "
                       "could be absent.");

        // For Unary(Binary(X, Y)), IntermediateOut should not be empty.
        if (IsUnaryCompound(funtor_list)) {
          PADDLE_ENFORCE(
              ctx->HasInputs("IntermediateOut"),
              "If the compound_functor is Unary(Binary(X, Y)) and Binary "
              "is elementwise_add, the intermediate_out must be not absent.");
        }

        ctx->SetOutputDim(x_grad_name,
                          ctx->GetInputDim(framework::GradVarName("Out")));
        ctx->ShareLoD(framework::GradVarName("Out"), x_grad_name);
      }
C
chengduo 已提交
302 303
    }
    if (ctx->HasOutput(y_grad_name)) {
304 305 306
      PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
      ctx->SetOutputDim(y_grad_name, ctx->GetInputDim("Y"));
      ctx->ShareLoD("Y", y_grad_name);
C
chengduo 已提交
307 308 309 310 311 312
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
313 314
    //    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
    auto input_data_type_index = ctx.Input<framework::Tensor>("Y")->type();
C
chengduo 已提交
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
    auto input_data_type = framework::ToDataType(input_data_type_index);
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(fused_elemwise_activation, ops::FusedElemwiseActivationOp,
                  ops::FusedElemwiseActivationMaker,
                  ops::FusedElemwiseActivationGradMaker);
REGISTER_OPERATOR(fused_elemwise_activation_grad,
                  ops::FusedElemwiseActivationOpGrad);

REGISTER_OP_CPU_KERNEL(
    fused_elemwise_activation,
    ops::FusedElemwiseActivationKernel<paddle::platform::CPUDeviceContext,
                                       float>,
    ops::FusedElemwiseActivationKernel<paddle::platform::CPUDeviceContext,
                                       double>);

REGISTER_OP_CPU_KERNEL(
    fused_elemwise_activation_grad,
    ops::FusedElemwiseActivationGradKernel<paddle::platform::CPUDeviceContext,
                                           float>,
    ops::FusedElemwiseActivationGradKernel<paddle::platform::CPUDeviceContext,
                                           double>);