adagrad.py 7.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .optimizer import Optimizer
from ..fluid import core
from ..fluid import framework
from ..fluid.framework import Variable

20 21
__all__ = []

22 23

class Adagrad(Optimizer):
24
    r"""
25 26 27 28 29 30 31 32 33 34
    The Adaptive Gradient optimizer (Adagrad for short) use an optimization described 
    in paper: `Adaptive Subgradient Methods for Online Learning and
    Stochastic Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The parameter ``param_out`` update rule with gradient ``grad``:

    .. math::

        moment\_out &= moment + grad * grad

35
        param\_out &= param - \frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}
36 37 38 39 40 41 42 43 44 45 46 47


    The original paper does not have the ``epsilon`` attribute. It is added here
    in our implementation as also proposed `Per-parameter adaptive learning rate
    methods <http://cs231n.github.io/neural-networks-3/#ada>`_
    for numerical stability to avoid the division by zero error.

    Args:
        learning_rate (float|Tensor): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
48 49 50 51 52 53 54 55 56 57 58 59 60
	parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``. \
	    This parameter is required in dygraph mode. And you can specify different options for \
            different parameter groups such as the learning rate, weight decay, etc, \
            then the parameters are list of dict. Note that the learning_rate in paramter groups \
            represents the scale of base learning_rate. \
	    The default value is None in static mode, at this time all parameters will be updated.
	weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
	    It canbe a float value as coeff of L2 regularization or \
	    :ref:`api_paddle_regularizer_L1Decay`, :ref:`api_paddle_regularizer_L2Decay`.
	    If a parameter has set regularizer using :ref:`api_paddle_fluid_param_attr_aramAttr` already, \
	    the regularization setting here in optimizer will be ignored for this parameter. \
	    Otherwise, the regularization setting here in optimizer will take effect. \
	    Default None, meaning there is no regularization.
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies, 
            ClipGradByGlobalNorm, ClipGradByNorm and ClipGradByValue. Default None, 
            meaning there is no gradient clipping.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        initial_accumulator_value (float, optional): Initial value for moment accumulator.
            The default value is 0.0.

    Examples:
        .. code-block:: python

            import paddle

            inp = paddle.rand(shape=[10, 10])
            linear = paddle.nn.Linear(10, 10)
            out = linear(inp)
            loss = paddle.mean(out)
            adagrad = paddle.optimizer.Adagrad(learning_rate=0.1,
                    parameters=linear.parameters())
            out.backward()
            adagrad.step()
            adagrad.clear_grad()

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
            #Note that the learning_rate of linear_2 is 0.01.
            linear_1 = paddle.nn.Linear(10, 10)
            linear_2 = paddle.nn.Linear(10, 10)
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            out = linear_1(inp)
            out = linear_2(out)
            loss = paddle.mean(out)
            adagrad = paddle.optimizer.Adagrad(
                learning_rate=0.1,
                parameters=[{
                    'params': linear_1.parameters()
                }, {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1,
                }],
                weight_decay=0.01)                   
            out.backward()
            adagrad.step()
            adagrad.clear_grad()

107 108 109
    """
    _moment_acc_str = "moment"

L
Ligoml 已提交
110 111 112 113 114 115 116 117 118 119
    def __init__(
        self,
        learning_rate,
        epsilon=1.0e-6,
        parameters=None,
        weight_decay=None,
        grad_clip=None,
        name=None,
        initial_accumulator_value=0.0,
    ):
120 121
        assert learning_rate is not None
        assert epsilon is not None
L
Ligoml 已提交
122 123 124 125 126 127 128
        super(Adagrad, self).__init__(
            learning_rate=learning_rate,
            parameters=parameters,
            weight_decay=weight_decay,
            grad_clip=grad_clip,
            name=name,
        )
129 130 131
        self.type = "adagrad"
        self._epsilon = epsilon
        self.initial_accumulator_value = initial_accumulator_value
132 133 134 135
        self._default_dict = {
            'epsilon': epsilon,
            'initial_accumulator_value': initial_accumulator_value,
        }
136 137 138 139

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

140 141 142
        if isinstance(parameters, dict):
            parameters = self._update_param_group(parameters)

143
        for p in parameters:
L
Ligoml 已提交
144 145 146 147 148
            self._add_accumulator(
                self._moment_acc_str,
                p,
                fill_value=self.initial_accumulator_value,
            )
149 150 151 152

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

153 154 155
        if isinstance(param_and_grad, dict):
            param_and_grad = self._update_param_group(param_and_grad)

L
Ligoml 已提交
156 157 158
        moment_acc = self._get_accumulator(
            self._moment_acc_str, param_and_grad[0]
        )
159
        # Create the adagrad optimizer op
L
Ligoml 已提交
160 161 162 163 164 165 166 167 168 169 170 171
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={"ParamOut": param_and_grad[0], "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon},
            stop_gradient=True,
        )
172 173

        return adagrad_op
174 175 176 177 178

    def _update_param_group(self, parameters):
        self._epsilon = parameters.get('epsilon', self._default_dict['epsilon'])
        self.initial_accumulator_value = parameters.get(
            'initial_accumulator_value',
L
Ligoml 已提交
179 180
            self._default_dict['initial_accumulator_value'],
        )
181 182
        parameters = parameters.get('params')
        return parameters