# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .optimizer import Optimizer from ..fluid import core from ..fluid import framework from ..fluid.framework import Variable __all__ = [] class Adagrad(Optimizer): r""" The Adaptive Gradient optimizer (Adagrad for short) use an optimization described in paper: `Adaptive Subgradient Methods for Online Learning and Stochastic Optimization `_. The parameter ``param_out`` update rule with gradient ``grad``: .. math:: moment\_out &= moment + grad * grad param\_out &= param - \frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon} The original paper does not have the ``epsilon`` attribute. It is added here in our implementation as also proposed `Per-parameter adaptive learning rate methods `_ for numerical stability to avoid the division by zero error. Args: learning_rate (float|Tensor): The learning rate used to update ``Parameter``. It can be a float value or a ``Variable`` with a float type. epsilon (float, optional): A small float value for numerical stability. The default value is 1e-06. parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``. \ This parameter is required in dygraph mode. And you can specify different options for \ different parameter groups such as the learning rate, weight decay, etc, \ then the parameters are list of dict. Note that the learning_rate in paramter groups \ represents the scale of base learning_rate. \ The default value is None in static mode, at this time all parameters will be updated. weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \ It canbe a float value as coeff of L2 regularization or \ :ref:`api_paddle_regularizer_L1Decay`, :ref:`api_paddle_regularizer_L2Decay`. If a parameter has set regularizer using :ref:`api_paddle_fluid_param_attr_aramAttr` already, \ the regularization setting here in optimizer will be ignored for this parameter. \ Otherwise, the regularization setting here in optimizer will take effect. \ Default None, meaning there is no regularization. grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of some derived class of ``GradientClipBase`` . There are three cliping strategies, ClipGradByGlobalNorm, ClipGradByNorm and ClipGradByValue. Default None, meaning there is no gradient clipping. name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. The default value is None. initial_accumulator_value (float, optional): Initial value for moment accumulator. The default value is 0.0. Examples: .. code-block:: python import paddle inp = paddle.rand(shape=[10, 10]) linear = paddle.nn.Linear(10, 10) out = linear(inp) loss = paddle.mean(out) adagrad = paddle.optimizer.Adagrad(learning_rate=0.1, parameters=linear.parameters()) out.backward() adagrad.step() adagrad.clear_grad() #Note that the learning_rate of linear_2 is 0.01. linear_1 = paddle.nn.Linear(10, 10) linear_2 = paddle.nn.Linear(10, 10) inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1) out = linear_1(inp) out = linear_2(out) loss = paddle.mean(out) adagrad = paddle.optimizer.Adagrad( learning_rate=0.1, parameters=[{ 'params': linear_1.parameters() }, { 'params': linear_2.parameters(), 'weight_decay': 0.001, 'learning_rate': 0.1, }], weight_decay=0.01) out.backward() adagrad.step() adagrad.clear_grad() """ _moment_acc_str = "moment" def __init__( self, learning_rate, epsilon=1.0e-6, parameters=None, weight_decay=None, grad_clip=None, name=None, initial_accumulator_value=0.0, ): assert learning_rate is not None assert epsilon is not None super(Adagrad, self).__init__( learning_rate=learning_rate, parameters=parameters, weight_decay=weight_decay, grad_clip=grad_clip, name=name, ) self.type = "adagrad" self._epsilon = epsilon self.initial_accumulator_value = initial_accumulator_value self._default_dict = { 'epsilon': epsilon, 'initial_accumulator_value': initial_accumulator_value, } def _create_accumulators(self, block, parameters): assert isinstance(block, framework.Block) if isinstance(parameters, dict): parameters = self._update_param_group(parameters) for p in parameters: self._add_accumulator( self._moment_acc_str, p, fill_value=self.initial_accumulator_value, ) def _append_optimize_op(self, block, param_and_grad): assert isinstance(block, framework.Block) if isinstance(param_and_grad, dict): param_and_grad = self._update_param_group(param_and_grad) moment_acc = self._get_accumulator( self._moment_acc_str, param_and_grad[0] ) # Create the adagrad optimizer op adagrad_op = block.append_op( type=self.type, inputs={ "Param": param_and_grad[0], "Grad": param_and_grad[1], "Moment": moment_acc, "LearningRate": self._create_param_lr(param_and_grad), }, outputs={"ParamOut": param_and_grad[0], "MomentOut": moment_acc}, attrs={"epsilon": self._epsilon}, stop_gradient=True, ) return adagrad_op def _update_param_group(self, parameters): self._epsilon = parameters.get('epsilon', self._default_dict['epsilon']) self.initial_accumulator_value = parameters.get( 'initial_accumulator_value', self._default_dict['initial_accumulator_value'], ) parameters = parameters.get('params') return parameters