box_coder_op.h 7.0 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
G
gaoyuan 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
S
Siddharth Goyal 已提交
13
#include <string>
Y
Yi Wang 已提交
14 15
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
G
gaoyuan 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

namespace paddle {
namespace operators {

enum class BoxCodeType { kEncodeCenterSize = 0, kDecodeCenterSize = 1 };

inline BoxCodeType GetBoxCodeType(const std::string& type) {
  if (type == "encode_center_size") {
    return BoxCodeType::kEncodeCenterSize;
  } else if (type == "decode_center_size") {
    return BoxCodeType::kDecodeCenterSize;
  }
  PADDLE_THROW("Not support type %s.", type);
}

template <typename T>
class BoxCoderKernel : public framework::OpKernel<T> {
 public:
G
gaoyuan 已提交
34 35 36
  void EncodeCenterSize(const framework::Tensor& target_box,
                        const framework::Tensor& prior_box,
                        const framework::Tensor& prior_box_var,
37
                        const bool normalized, T* output) const {
G
gaoyuan 已提交
38 39
    int64_t row = target_box.dims()[0];
    int64_t col = prior_box.dims()[0];
G
gaoyuan 已提交
40
    int64_t len = prior_box.dims()[1];
G
gaoyuan 已提交
41 42 43 44 45 46
    auto* target_box_data = target_box.data<T>();
    auto* prior_box_data = prior_box.data<T>();
    auto* prior_box_var_data = prior_box_var.data<T>();

    for (int64_t i = 0; i < row; ++i) {
      for (int64_t j = 0; j < col; ++j) {
47 48 49 50 51
        T prior_box_width = prior_box_data[j * len + 2] -
                            prior_box_data[j * len] + (normalized == false);
        T prior_box_height = prior_box_data[j * len + 3] -
                             prior_box_data[j * len + 1] +
                             (normalized == false);
G
gaoyuan 已提交
52
        T prior_box_center_x =
G
gaoyuan 已提交
53
            (prior_box_data[j * len + 2] + prior_box_data[j * len]) / 2;
G
gaoyuan 已提交
54
        T prior_box_center_y =
G
gaoyuan 已提交
55
            (prior_box_data[j * len + 3] + prior_box_data[j * len + 1]) / 2;
G
gaoyuan 已提交
56 57

        T target_box_center_x =
G
gaoyuan 已提交
58
            (target_box_data[i * len + 2] + target_box_data[i * len]) / 2;
G
gaoyuan 已提交
59
        T target_box_center_y =
G
gaoyuan 已提交
60
            (target_box_data[i * len + 3] + target_box_data[i * len + 1]) / 2;
61 62 63 64 65
        T target_box_width = target_box_data[i * len + 2] -
                             target_box_data[i * len] + (normalized == false);
        T target_box_height = target_box_data[i * len + 3] -
                              target_box_data[i * len + 1] +
                              (normalized == false);
G
gaoyuan 已提交
66

G
gaoyuan 已提交
67
        size_t offset = i * col * len + j * len;
G
gaoyuan 已提交
68
        output[offset] = (target_box_center_x - prior_box_center_x) /
G
gaoyuan 已提交
69
                         prior_box_width / prior_box_var_data[j * len];
G
gaoyuan 已提交
70
        output[offset + 1] = (target_box_center_y - prior_box_center_y) /
G
gaoyuan 已提交
71
                             prior_box_height / prior_box_var_data[j * len + 1];
G
gaoyuan 已提交
72 73
        output[offset + 2] =
            std::log(std::fabs(target_box_width / prior_box_width)) /
G
gaoyuan 已提交
74
            prior_box_var_data[j * len + 2];
G
gaoyuan 已提交
75 76
        output[offset + 3] =
            std::log(std::fabs(target_box_height / prior_box_height)) /
G
gaoyuan 已提交
77
            prior_box_var_data[j * len + 3];
G
gaoyuan 已提交
78 79 80
      }
    }
  }
G
gaoyuan 已提交
81 82 83
  void DecodeCenterSize(const framework::Tensor& target_box,
                        const framework::Tensor& prior_box,
                        const framework::Tensor& prior_box_var,
84
                        const bool normalized, T* output) const {
G
gaoyuan 已提交
85 86
    int64_t row = target_box.dims()[0];
    int64_t col = prior_box.dims()[0];
G
gaoyuan 已提交
87
    int64_t len = prior_box.dims()[1];
G
gaoyuan 已提交
88 89 90 91 92 93 94

    auto* target_box_data = target_box.data<T>();
    auto* prior_box_data = prior_box.data<T>();
    auto* prior_box_var_data = prior_box_var.data<T>();

    for (int64_t i = 0; i < row; ++i) {
      for (int64_t j = 0; j < col; ++j) {
Y
Yuan Gao 已提交
95
        size_t offset = i * col * len + j * len;
96 97 98 99 100
        T prior_box_width = prior_box_data[j * len + 2] -
                            prior_box_data[j * len] + (normalized == false);
        T prior_box_height = prior_box_data[j * len + 3] -
                             prior_box_data[j * len + 1] +
                             (normalized == false);
G
gaoyuan 已提交
101
        T prior_box_center_x =
G
gaoyuan 已提交
102
            (prior_box_data[j * len + 2] + prior_box_data[j * len]) / 2;
G
gaoyuan 已提交
103
        T prior_box_center_y =
G
gaoyuan 已提交
104
            (prior_box_data[j * len + 3] + prior_box_data[j * len + 1]) / 2;
G
gaoyuan 已提交
105

G
gaoyuan 已提交
106
        T target_box_center_x = prior_box_var_data[j * len] *
Y
Yuan Gao 已提交
107
                                    target_box_data[offset] * prior_box_width +
G
gaoyuan 已提交
108
                                prior_box_center_x;
G
gaoyuan 已提交
109
        T target_box_center_y = prior_box_var_data[j * len + 1] *
Y
Yuan Gao 已提交
110
                                    target_box_data[offset + 1] *
G
gaoyuan 已提交
111 112
                                    prior_box_height +
                                prior_box_center_y;
G
gaoyuan 已提交
113
        T target_box_width = std::exp(prior_box_var_data[j * len + 2] *
Y
Yuan Gao 已提交
114
                                      target_box_data[offset + 2]) *
G
gaoyuan 已提交
115
                             prior_box_width;
G
gaoyuan 已提交
116
        T target_box_height = std::exp(prior_box_var_data[j * len + 3] *
Y
Yuan Gao 已提交
117
                                       target_box_data[offset + 3]) *
G
gaoyuan 已提交
118 119 120 121
                              prior_box_height;

        output[offset] = target_box_center_x - target_box_width / 2;
        output[offset + 1] = target_box_center_y - target_box_height / 2;
122 123 124 125
        output[offset + 2] =
            target_box_center_x + target_box_width / 2 - (normalized == false);
        output[offset + 3] =
            target_box_center_y + target_box_height / 2 - (normalized == false);
G
gaoyuan 已提交
126 127 128 129 130 131 132 133
      }
    }
  }

  void Compute(const framework::ExecutionContext& context) const override {
    auto* prior_box = context.Input<framework::Tensor>("PriorBox");
    auto* prior_box_var = context.Input<framework::Tensor>("PriorBoxVar");
    auto* target_box = context.Input<framework::LoDTensor>("TargetBox");
G
gaoyuan 已提交
134
    auto* output_box = context.Output<framework::Tensor>("OutputBox");
G
gaoyuan 已提交
135 136 137 138 139 140 141

    if (target_box->lod().size()) {
      PADDLE_ENFORCE_EQ(target_box->lod().size(), 1UL,
                        "Only support 1 level of LoD.");
    }
    auto row = target_box->dims()[0];
    auto col = prior_box->dims()[0];
G
gaoyuan 已提交
142
    auto len = prior_box->dims()[1];
G
gaoyuan 已提交
143

G
gaoyuan 已提交
144
    output_box->mutable_data<T>({row, col, len}, context.GetPlace());
G
gaoyuan 已提交
145 146

    auto code_type = GetBoxCodeType(context.Attr<std::string>("code_type"));
147
    bool normalized = context.Attr<bool>("box_normalized");
G
gaoyuan 已提交
148 149
    T* output = output_box->data<T>();
    if (code_type == BoxCodeType::kEncodeCenterSize) {
150 151
      EncodeCenterSize(*target_box, *prior_box, *prior_box_var, normalized,
                       output);
G
gaoyuan 已提交
152
    } else if (code_type == BoxCodeType::kDecodeCenterSize) {
153 154
      DecodeCenterSize(*target_box, *prior_box, *prior_box_var, normalized,
                       output);
G
gaoyuan 已提交
155 156 157 158 159 160
    }
  }
};

}  // namespace operators
}  // namespace paddle