Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
d3e99aee
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d3e99aee
编写于
6月 04, 2018
作者:
Y
Yuan Gao
提交者:
qingqing01
6月 04, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add normalize switch to box_coder_op (#11129)
上级
e0a8c584
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
78 addition
and
44 deletion
+78
-44
paddle/fluid/operators/detection/box_coder_op.cc
paddle/fluid/operators/detection/box_coder_op.cc
+4
-0
paddle/fluid/operators/detection/box_coder_op.cu
paddle/fluid/operators/detection/box_coder_op.cu
+24
-18
paddle/fluid/operators/detection/box_coder_op.h
paddle/fluid/operators/detection/box_coder_op.h
+26
-18
python/paddle/fluid/tests/unittests/test_box_coder_op.py
python/paddle/fluid/tests/unittests/test_box_coder_op.py
+24
-8
未找到文件。
paddle/fluid/operators/detection/box_coder_op.cc
浏览文件 @
d3e99aee
...
...
@@ -91,6 +91,10 @@ class BoxCoderOpMaker : public framework::OpProtoAndCheckerMaker {
"the code type used with the target box"
)
.
SetDefault
(
"encode_center_size"
)
.
InEnum
({
"encode_center_size"
,
"decode_center_size"
});
AddAttr
<
bool
>
(
"box_normalized"
,
"(bool, default true) "
"whether treat the priorbox as a noramlized box"
)
.
SetDefault
(
true
);
AddOutput
(
"OutputBox"
,
"(LoDTensor or Tensor) "
"When code_type is 'encode_center_size', the output tensor of "
...
...
paddle/fluid/operators/detection/box_coder_op.cu
浏览文件 @
d3e99aee
...
...
@@ -20,15 +20,16 @@ __global__ void EncodeCenterSizeKernel(const T* prior_box_data,
const
T
*
prior_box_var_data
,
const
T
*
target_box_data
,
const
int
row
,
const
int
col
,
const
int
len
,
T
*
output
)
{
const
bool
normalized
,
T
*
output
)
{
const
int
idx
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
if
(
idx
<
row
*
col
)
{
const
int
row_idx
=
idx
/
col
;
const
int
col_idx
=
idx
%
col
;
T
prior_box_width
=
prior_box_data
[
col_idx
*
len
+
2
]
-
prior_box_data
[
col_idx
*
len
];
T
prior_box_height
=
prior_box_data
[
col_idx
*
len
+
3
]
-
prior_box_data
[
col_idx
*
len
+
1
];
T
prior_box_width
=
prior_box_data
[
col_idx
*
len
+
2
]
-
prior_box_data
[
col_idx
*
len
]
+
(
normalized
==
false
);
T
prior_box_height
=
prior_box_data
[
col_idx
*
len
+
3
]
-
prior_box_data
[
col_idx
*
len
+
1
]
+
(
normalized
==
false
);
T
prior_box_center_x
=
(
prior_box_data
[
col_idx
*
len
+
2
]
+
prior_box_data
[
col_idx
*
len
])
/
2
;
T
prior_box_center_y
=
(
prior_box_data
[
col_idx
*
len
+
3
]
+
...
...
@@ -41,10 +42,11 @@ __global__ void EncodeCenterSizeKernel(const T* prior_box_data,
T
target_box_center_y
=
(
target_box_data
[
row_idx
*
len
+
3
]
+
target_box_data
[
row_idx
*
len
+
1
])
/
2
;
T
target_box_width
=
target_box_data
[
row_idx
*
len
+
2
]
-
target_box_data
[
row_idx
*
len
];
T
target_box_height
=
target_box_data
[
row_idx
*
len
+
3
]
-
target_box_data
[
row_idx
*
len
+
1
];
T
target_box_width
=
target_box_data
[
row_idx
*
len
+
2
]
-
target_box_data
[
row_idx
*
len
]
+
(
normalized
==
false
);
T
target_box_height
=
target_box_data
[
row_idx
*
len
+
3
]
-
target_box_data
[
row_idx
*
len
+
1
]
+
(
normalized
==
false
);
output
[
idx
*
len
]
=
(
target_box_center_x
-
prior_box_center_x
)
/
prior_box_width
/
prior_box_var_data
[
col_idx
*
len
];
...
...
@@ -63,14 +65,15 @@ __global__ void DecodeCenterSizeKernel(const T* prior_box_data,
const
T
*
prior_box_var_data
,
const
T
*
target_box_data
,
const
int
row
,
const
int
col
,
const
int
len
,
T
*
output
)
{
const
bool
normalized
,
T
*
output
)
{
const
int
idx
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
if
(
idx
<
row
*
col
)
{
const
int
col_idx
=
idx
%
col
;
T
prior_box_width
=
prior_box_data
[
col_idx
*
len
+
2
]
-
prior_box_data
[
col_idx
*
len
];
T
prior_box_height
=
prior_box_data
[
col_idx
*
len
+
3
]
-
prior_box_data
[
col_idx
*
len
+
1
];
T
prior_box_width
=
prior_box_data
[
col_idx
*
len
+
2
]
-
prior_box_data
[
col_idx
*
len
]
+
(
normalized
==
false
);
T
prior_box_height
=
prior_box_data
[
col_idx
*
len
+
3
]
-
prior_box_data
[
col_idx
*
len
+
1
]
+
(
normalized
==
false
);
T
prior_box_center_x
=
(
prior_box_data
[
col_idx
*
len
+
2
]
+
prior_box_data
[
col_idx
*
len
])
/
2
;
T
prior_box_center_y
=
(
prior_box_data
[
col_idx
*
len
+
3
]
+
...
...
@@ -93,8 +96,10 @@ __global__ void DecodeCenterSizeKernel(const T* prior_box_data,
output
[
idx
*
len
]
=
target_box_center_x
-
target_box_width
/
2
;
output
[
idx
*
len
+
1
]
=
target_box_center_y
-
target_box_height
/
2
;
output
[
idx
*
len
+
2
]
=
target_box_center_x
+
target_box_width
/
2
;
output
[
idx
*
len
+
3
]
=
target_box_center_y
+
target_box_height
/
2
;
output
[
idx
*
len
+
2
]
=
target_box_center_x
+
target_box_width
/
2
-
(
normalized
==
false
);
output
[
idx
*
len
+
3
]
=
target_box_center_y
+
target_box_height
/
2
-
(
normalized
==
false
);
}
}
...
...
@@ -128,14 +133,15 @@ class BoxCoderCUDAKernel : public framework::OpKernel<T> {
T
*
output
=
output_box
->
data
<
T
>
();
auto
code_type
=
GetBoxCodeType
(
context
.
Attr
<
std
::
string
>
(
"code_type"
));
bool
normalized
=
context
.
Attr
<
bool
>
(
"box_normalized"
);
if
(
code_type
==
BoxCodeType
::
kEncodeCenterSize
)
{
EncodeCenterSizeKernel
<
T
><<<
grid
,
block
,
0
,
device_ctx
.
stream
()
>>>
(
prior_box_data
,
prior_box_var_data
,
target_box_data
,
row
,
col
,
len
,
output
);
normalized
,
output
);
}
else
if
(
code_type
==
BoxCodeType
::
kDecodeCenterSize
)
{
DecodeCenterSizeKernel
<
T
><<<
grid
,
block
,
0
,
device_ctx
.
stream
()
>>>
(
prior_box_data
,
prior_box_var_data
,
target_box_data
,
row
,
col
,
len
,
output
);
normalized
,
output
);
}
}
};
...
...
paddle/fluid/operators/detection/box_coder_op.h
浏览文件 @
d3e99aee
...
...
@@ -34,7 +34,7 @@ class BoxCoderKernel : public framework::OpKernel<T> {
void
EncodeCenterSize
(
const
framework
::
Tensor
&
target_box
,
const
framework
::
Tensor
&
prior_box
,
const
framework
::
Tensor
&
prior_box_var
,
T
*
output
)
const
{
const
bool
normalized
,
T
*
output
)
const
{
int64_t
row
=
target_box
.
dims
()[
0
];
int64_t
col
=
prior_box
.
dims
()[
0
];
int64_t
len
=
prior_box
.
dims
()[
1
];
...
...
@@ -44,10 +44,11 @@ class BoxCoderKernel : public framework::OpKernel<T> {
for
(
int64_t
i
=
0
;
i
<
row
;
++
i
)
{
for
(
int64_t
j
=
0
;
j
<
col
;
++
j
)
{
T
prior_box_width
=
prior_box_data
[
j
*
len
+
2
]
-
prior_box_data
[
j
*
len
];
T
prior_box_height
=
prior_box_data
[
j
*
len
+
3
]
-
prior_box_data
[
j
*
len
+
1
];
T
prior_box_width
=
prior_box_data
[
j
*
len
+
2
]
-
prior_box_data
[
j
*
len
]
+
(
normalized
==
false
);
T
prior_box_height
=
prior_box_data
[
j
*
len
+
3
]
-
prior_box_data
[
j
*
len
+
1
]
+
(
normalized
==
false
);
T
prior_box_center_x
=
(
prior_box_data
[
j
*
len
+
2
]
+
prior_box_data
[
j
*
len
])
/
2
;
T
prior_box_center_y
=
...
...
@@ -57,10 +58,11 @@ class BoxCoderKernel : public framework::OpKernel<T> {
(
target_box_data
[
i
*
len
+
2
]
+
target_box_data
[
i
*
len
])
/
2
;
T
target_box_center_y
=
(
target_box_data
[
i
*
len
+
3
]
+
target_box_data
[
i
*
len
+
1
])
/
2
;
T
target_box_width
=
target_box_data
[
i
*
len
+
2
]
-
target_box_data
[
i
*
len
];
T
target_box_height
=
target_box_data
[
i
*
len
+
3
]
-
target_box_data
[
i
*
len
+
1
];
T
target_box_width
=
target_box_data
[
i
*
len
+
2
]
-
target_box_data
[
i
*
len
]
+
(
normalized
==
false
);
T
target_box_height
=
target_box_data
[
i
*
len
+
3
]
-
target_box_data
[
i
*
len
+
1
]
+
(
normalized
==
false
);
size_t
offset
=
i
*
col
*
len
+
j
*
len
;
output
[
offset
]
=
(
target_box_center_x
-
prior_box_center_x
)
/
...
...
@@ -79,7 +81,7 @@ class BoxCoderKernel : public framework::OpKernel<T> {
void
DecodeCenterSize
(
const
framework
::
Tensor
&
target_box
,
const
framework
::
Tensor
&
prior_box
,
const
framework
::
Tensor
&
prior_box_var
,
T
*
output
)
const
{
const
bool
normalized
,
T
*
output
)
const
{
int64_t
row
=
target_box
.
dims
()[
0
];
int64_t
col
=
prior_box
.
dims
()[
0
];
int64_t
len
=
prior_box
.
dims
()[
1
];
...
...
@@ -91,10 +93,11 @@ class BoxCoderKernel : public framework::OpKernel<T> {
for
(
int64_t
i
=
0
;
i
<
row
;
++
i
)
{
for
(
int64_t
j
=
0
;
j
<
col
;
++
j
)
{
size_t
offset
=
i
*
col
*
len
+
j
*
len
;
T
prior_box_width
=
prior_box_data
[
j
*
len
+
2
]
-
prior_box_data
[
j
*
len
];
T
prior_box_height
=
prior_box_data
[
j
*
len
+
3
]
-
prior_box_data
[
j
*
len
+
1
];
T
prior_box_width
=
prior_box_data
[
j
*
len
+
2
]
-
prior_box_data
[
j
*
len
]
+
(
normalized
==
false
);
T
prior_box_height
=
prior_box_data
[
j
*
len
+
3
]
-
prior_box_data
[
j
*
len
+
1
]
+
(
normalized
==
false
);
T
prior_box_center_x
=
(
prior_box_data
[
j
*
len
+
2
]
+
prior_box_data
[
j
*
len
])
/
2
;
T
prior_box_center_y
=
...
...
@@ -116,8 +119,10 @@ class BoxCoderKernel : public framework::OpKernel<T> {
output
[
offset
]
=
target_box_center_x
-
target_box_width
/
2
;
output
[
offset
+
1
]
=
target_box_center_y
-
target_box_height
/
2
;
output
[
offset
+
2
]
=
target_box_center_x
+
target_box_width
/
2
;
output
[
offset
+
3
]
=
target_box_center_y
+
target_box_height
/
2
;
output
[
offset
+
2
]
=
target_box_center_x
+
target_box_width
/
2
-
(
normalized
==
false
);
output
[
offset
+
3
]
=
target_box_center_y
+
target_box_height
/
2
-
(
normalized
==
false
);
}
}
}
...
...
@@ -139,11 +144,14 @@ class BoxCoderKernel : public framework::OpKernel<T> {
output_box
->
mutable_data
<
T
>
({
row
,
col
,
len
},
context
.
GetPlace
());
auto
code_type
=
GetBoxCodeType
(
context
.
Attr
<
std
::
string
>
(
"code_type"
));
bool
normalized
=
context
.
Attr
<
bool
>
(
"box_normalized"
);
T
*
output
=
output_box
->
data
<
T
>
();
if
(
code_type
==
BoxCodeType
::
kEncodeCenterSize
)
{
EncodeCenterSize
(
*
target_box
,
*
prior_box
,
*
prior_box_var
,
output
);
EncodeCenterSize
(
*
target_box
,
*
prior_box
,
*
prior_box_var
,
normalized
,
output
);
}
else
if
(
code_type
==
BoxCodeType
::
kDecodeCenterSize
)
{
DecodeCenterSize
(
*
target_box
,
*
prior_box
,
*
prior_box_var
,
output
);
DecodeCenterSize
(
*
target_box
,
*
prior_box
,
*
prior_box_var
,
normalized
,
output
);
}
}
};
...
...
python/paddle/fluid/tests/unittests/test_box_coder_op.py
浏览文件 @
d3e99aee
...
...
@@ -19,7 +19,8 @@ import math
from
op_test
import
OpTest
def
box_coder
(
target_box
,
prior_box
,
prior_box_var
,
output_box
,
code_type
):
def
box_coder
(
target_box
,
prior_box
,
prior_box_var
,
output_box
,
code_type
,
box_normalized
):
prior_box_x
=
(
(
prior_box
[:,
2
]
+
prior_box
[:,
0
])
/
2
).
reshape
(
1
,
prior_box
.
shape
[
0
])
prior_box_y
=
(
...
...
@@ -30,6 +31,9 @@ def box_coder(target_box, prior_box, prior_box_var, output_box, code_type):
(
prior_box
[:,
3
]
-
prior_box
[:,
1
])).
reshape
(
1
,
prior_box
.
shape
[
0
])
prior_box_var
=
prior_box_var
.
reshape
(
1
,
prior_box_var
.
shape
[
0
],
prior_box_var
.
shape
[
1
])
if
not
box_normalized
:
prior_box_height
=
prior_box_height
+
1
prior_box_width
=
prior_box_width
+
1
if
(
code_type
==
"EncodeCenterSize"
):
target_box_x
=
((
target_box
[:,
2
]
+
target_box
[:,
0
])
/
2
).
reshape
(
...
...
@@ -40,6 +44,9 @@ def box_coder(target_box, prior_box, prior_box_var, output_box, code_type):
target_box
.
shape
[
0
],
1
)
target_box_height
=
((
target_box
[:,
3
]
-
target_box
[:,
1
])).
reshape
(
target_box
.
shape
[
0
],
1
)
if
not
box_normalized
:
target_box_height
=
target_box_height
+
1
target_box_width
=
target_box_width
+
1
output_box
[:,:,
0
]
=
(
target_box_x
-
prior_box_x
)
/
prior_box_width
/
\
prior_box_var
[:,:,
0
]
...
...
@@ -64,9 +71,13 @@ def box_coder(target_box, prior_box, prior_box_var, output_box, code_type):
output_box
[:,
:,
1
]
=
target_box_y
-
target_box_height
/
2
output_box
[:,
:,
2
]
=
target_box_x
+
target_box_width
/
2
output_box
[:,
:,
3
]
=
target_box_y
+
target_box_height
/
2
if
not
box_normalized
:
output_box
[:,
:,
2
]
=
output_box
[:,
:,
2
]
-
1
output_box
[:,
:,
3
]
=
output_box
[:,
:,
3
]
-
1
def
batch_box_coder
(
prior_box
,
prior_box_var
,
target_box
,
lod
,
code_type
):
def
batch_box_coder
(
prior_box
,
prior_box_var
,
target_box
,
lod
,
code_type
,
box_normalized
):
n
=
target_box
.
shape
[
0
]
m
=
prior_box
.
shape
[
0
]
output_box
=
np
.
zeros
((
n
,
m
,
4
),
dtype
=
np
.
float32
)
...
...
@@ -74,11 +85,11 @@ def batch_box_coder(prior_box, prior_box_var, target_box, lod, code_type):
if
(
code_type
==
"EncodeCenterSize"
):
box_coder
(
target_box
[
lod
[
i
]:
lod
[
i
+
1
],
:],
prior_box
,
prior_box_var
,
output_box
[
lod
[
i
]:
lod
[
i
+
1
],
:,
:],
code_type
)
code_type
,
box_normalized
)
elif
(
code_type
==
"DecodeCenterSize"
):
box_coder
(
target_box
[
lod
[
i
]:
lod
[
i
+
1
],
:,
:],
prior_box
,
prior_box_var
,
output_box
[
lod
[
i
]:
lod
[
i
+
1
],
:,
:],
code_type
)
code_type
,
box_normalized
)
return
output_box
...
...
@@ -93,15 +104,19 @@ class TestBoxCoderOp(OpTest):
prior_box_var
=
np
.
random
.
random
((
10
,
4
)).
astype
(
'float32'
)
target_box
=
np
.
random
.
random
((
5
,
10
,
4
)).
astype
(
'float32'
)
code_type
=
"DecodeCenterSize"
box_normalized
=
False
output_box
=
batch_box_coder
(
prior_box
,
prior_box_var
,
target_box
,
lod
[
0
],
code_type
)
lod
[
0
],
code_type
,
box_normalized
)
self
.
inputs
=
{
'PriorBox'
:
prior_box
,
'PriorBoxVar'
:
prior_box_var
,
'TargetBox'
:
target_box
,
}
self
.
attrs
=
{
'code_type'
:
'decode_center_size'
}
self
.
attrs
=
{
'code_type'
:
'decode_center_size'
,
'box_normalized'
:
False
}
self
.
outputs
=
{
'OutputBox'
:
output_box
}
...
...
@@ -116,15 +131,16 @@ class TestBoxCoderOpWithLoD(OpTest):
prior_box_var
=
np
.
random
.
random
((
10
,
4
)).
astype
(
'float32'
)
target_box
=
np
.
random
.
random
((
20
,
4
)).
astype
(
'float32'
)
code_type
=
"EncodeCenterSize"
box_normalized
=
True
output_box
=
batch_box_coder
(
prior_box
,
prior_box_var
,
target_box
,
lod
[
0
],
code_type
)
lod
[
0
],
code_type
,
box_normalized
)
self
.
inputs
=
{
'PriorBox'
:
prior_box
,
'PriorBoxVar'
:
prior_box_var
,
'TargetBox'
:
(
target_box
,
lod
),
}
self
.
attrs
=
{
'code_type'
:
'encode_center_size'
}
self
.
attrs
=
{
'code_type'
:
'encode_center_size'
,
'box_normalized'
:
True
}
self
.
outputs
=
{
'OutputBox'
:
output_box
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录