fake_dequantize_op.h 3.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <vector>
18
#include "paddle/fluid/framework/ddim.h"
19 20 21 22 23
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {
24 25 26 27 28 29 30 31

template <typename DeviceContext, typename T>
struct DequantizeFunctor {
  void operator()(const DeviceContext& dev_ctx, const framework::Tensor* in,
                  const framework::Tensor* scale, T max_range,
                  framework::Tensor* out);
};

32 33 34 35 36 37 38
template <typename DeviceContext, typename T>
struct ChannelDequantizeFunctor {
  void operator()(const DeviceContext& dev_ctx, const framework::Tensor* in,
                  const framework::Tensor** scales, const int scale_num,
                  T max_range, framework::Tensor* out);
};

39 40 41 42 43
template <typename DeviceContext, typename T>
class FakeDequantizeMaxAbsKernel : public framework::OpKernel<T> {
 public:
  virtual void Compute(const framework::ExecutionContext& ctx) const {
    auto* in = ctx.Input<framework::Tensor>("X");
44
    auto* scale = ctx.Input<framework::Tensor>("Scale");
45 46
    auto* out = ctx.Output<framework::Tensor>("Out");

47 48 49 50
    float max_range = ctx.Attr<float>("max_range");

    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    out->mutable_data<T>(dev_ctx.GetPlace());
51

52 53
    DequantizeFunctor<DeviceContext, T>()(dev_ctx, in, scale,
                                          static_cast<T>(max_range), out);
54 55 56
  }
};

Z
Zhen Wang 已提交
57 58 59 60 61
template <typename DeviceContext, typename T>
class FakeChannelWiseDequantizeMaxAbsKernel : public framework::OpKernel<T> {
 public:
  virtual void Compute(const framework::ExecutionContext& ctx) const {
    auto* in = ctx.Input<framework::Tensor>("X");
62
    auto scales = ctx.MultiInput<framework::Tensor>("Scales");
Z
Zhen Wang 已提交
63 64
    auto* out = ctx.Output<framework::Tensor>("Out");

65
    auto quant_bits = ctx.Attr<std::vector<int>>("quant_bits");
66
    int max_range = 1;
Z
Zhen Wang 已提交
67 68 69

    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    out->mutable_data<T>(dev_ctx.GetPlace());
70 71
    int scale_num = scales.size();
    if (scale_num == 1) {
72 73 74 75 76
      PADDLE_ENFORCE_EQ(
          scales[0]->numel(), in->dims()[0],
          "The number of first scale values must be the same with "
          "first dimension value of Input(X) when the `Scales` has only one "
          "element.");
77 78
      max_range *= (std::pow(2, quant_bits[0] - 1) - 1);
    } else if (scale_num == 2) {
79 80 81 82 83
      PADDLE_ENFORCE_EQ(
          scales[0]->numel(), in->dims()[1],
          "The number of first scale values must be the same with "
          "second dimension value of Input(X) when the `Scales` has two "
          "elements.");
84 85 86
      PADDLE_ENFORCE_EQ(
          scales[1]->numel(), 1,
          "The second scale tensor should only have one value at now.");
87 88
      max_range *= (std::pow(2, quant_bits[0] - 1) - 1) *
                   (std::pow(2, quant_bits[1] - 1) - 1);
Z
Zhen Wang 已提交
89
    }
90 91
    ChannelDequantizeFunctor<DeviceContext, T>()(
        dev_ctx, in, scales.data(), scale_num, static_cast<T>(max_range), out);
Z
Zhen Wang 已提交
92 93 94
  }
};

95 96
}  // namespace operators
}  // namespace paddle