fake_dequantize_op.h 4.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {
22 23 24 25 26 27 28 29

template <typename DeviceContext, typename T>
struct DequantizeFunctor {
  void operator()(const DeviceContext& dev_ctx, const framework::Tensor* in,
                  const framework::Tensor* scale, T max_range,
                  framework::Tensor* out);
};

30 31 32 33 34
template <typename DeviceContext, typename T>
class FakeDequantizeMaxAbsKernel : public framework::OpKernel<T> {
 public:
  virtual void Compute(const framework::ExecutionContext& ctx) const {
    auto* in = ctx.Input<framework::Tensor>("X");
35
    auto* scale = ctx.Input<framework::Tensor>("Scale");
36 37
    auto* out = ctx.Output<framework::Tensor>("Out");

38 39 40 41
    float max_range = ctx.Attr<float>("max_range");

    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    out->mutable_data<T>(dev_ctx.GetPlace());
42

43 44
    DequantizeFunctor<DeviceContext, T>()(dev_ctx, in, scale,
                                          static_cast<T>(max_range), out);
45 46 47
  }
};

Z
Zhen Wang 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
template <typename DeviceContext, typename T>
class FakeChannelWiseDequantizeMaxAbsKernel : public framework::OpKernel<T> {
 public:
  virtual void Compute(const framework::ExecutionContext& ctx) const {
    auto* in = ctx.Input<framework::Tensor>("X");
    auto* weight_scales = ctx.Input<framework::Tensor>("WeightScales");
    auto* out = ctx.Output<framework::Tensor>("Out");

    PADDLE_ENFORCE_EQ(weight_scales->numel(), in->dims()[0],
                      "The weight uses the per-channel quantization type, so "
                      "the number of weight scale values must be the same with "
                      "first dimension value of Input(X).");

    int ativation_bits = ctx.Attr<int>("activation_bits");
    int weight_bits = ctx.Attr<int>("weight_bits");
    int range = std::pow(2, weight_bits - 1) - 1;

    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    out->mutable_data<T>(dev_ctx.GetPlace());

    auto dequant = DequantizeFunctor<DeviceContext, T>();
    if (ctx.HasInput("ActivationScale")) {
      auto* activation_scale = ctx.Input<framework::Tensor>("ActivationScale");
      PADDLE_ENFORCE_EQ(activation_scale->numel(), 1,
                        "The activation uses per-layer quantization type, so "
                        "it must have only one value.");
      framework::Tensor cpu_weigth_scales;
      framework::TensorCopy(*weight_scales, platform::CPUPlace(),
                            &cpu_weigth_scales);
      dev_ctx.Wait();
      const T* weight_scales_data = cpu_weigth_scales.data<T>();
      range *= (std::pow(2, ativation_bits - 1) - 1);
      for (int64_t i = 0; i < in->dims()[0]; i++) {
        framework::Tensor one_channel_in = in->Slice(i, i + 1);
        framework::Tensor one_channel_out = out->Slice(i, i + 1);
        auto max_range = range / weight_scales_data[i];
        dequant(dev_ctx, &one_channel_in, activation_scale,
                static_cast<T>(max_range), &one_channel_out);
      }
    } else {
      for (int64_t i = 0; i < in->dims()[0]; i++) {
        framework::Tensor one_channel_in = in->Slice(i, i + 1);
        framework::Tensor one_channel_out = out->Slice(i, i + 1);
        framework::Tensor one_channel_scale = weight_scales->Slice(i, i + 1);
        dequant(dev_ctx, &one_channel_in, &one_channel_scale,
                static_cast<T>(range), &one_channel_out);
      }
    }
  }
};

99 100
}  // namespace operators
}  // namespace paddle