elementwise_op.h 14.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14 15

#pragma once
C
chengduo 已提交
16

17
#include <algorithm>  // for max
L
liuwei1031 已提交
18
#include <memory>
19
#include <string>
L
liuwei1031 已提交
20
#include <unordered_map>
21
#include <vector>
22
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
23 24
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
25
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
C
chengduo 已提交
26

27 28 29
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
G
gongweibao 已提交
30 31 32 33 34 35 36 37 38

namespace paddle {
namespace operators {

class ElementwiseOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  using Tensor = framework::Tensor;
C
chengduo 已提交
39 40

  void InferShape(framework::InferShapeContext *ctx) const override {
41 42 43 44 45 46
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      "Input(X) of elementwise op should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput("Y"), true,
                      "Input(Y) of elementwise op should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Output(Out) of elementwise op should not be null.");
Q
Qiao Longfei 已提交
47

C
chengduo 已提交
48 49 50
    PADDLE_ENFORCE(
        ctx->GetInputsVarType("Y").front() ==
            framework::proto::VarType::LOD_TENSOR,
C
chengduo 已提交
51 52 53 54
        "The input var's type should be LoDTensor, but the received is %s [%s]",
        ctx->GetInputsVarType("Y").front(), ctx->Inputs("Y").front());

    if (ctx->GetInputsVarType("X").front() ==
55
        framework::proto::VarType::SELECTED_ROWS) {
56 57 58 59 60 61 62 63 64 65
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Y").size(), 1u,
          "ShapeError: For elementwise_op, if X is Sparse(VarType.SELECTED_ROWS"
          "), Y must be scalar. But reveived the dimension of Y = %s",
          ctx->GetInputDim("Y").size());
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Y")[0], 1,
          "ShapeError: For elementwise_op, if X is Sparse(VarType.SELECTED_ROWS"
          "), Y must be scalar. But reveived the first dimension of Y = %s",
          ctx->GetInputDim("Y")[0]);
66 67
    } else if (ctx->GetInputsVarType("X").front() !=
               framework::proto::VarType::LOD_TENSOR) {
C
chengduo 已提交
68 69 70
      PADDLE_THROW("X's type[%s] is not supported by elementwise_op.",
                   ctx->GetInputsVarType("X").front());
    }
71

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    if (ctx->GetInputDim("X") == ctx->GetInputDim("Y")) {
      ctx->ShareDim("X", /*->*/ "Out");
      ctx->ShareLoD("X", /*->*/ "Out");
    } else {
      auto x_dims = ctx->GetInputDim("X");
      auto y_dims = ctx->GetInputDim("Y");
      int max_dim = std::max(x_dims.size(), y_dims.size());
      int axis = ctx->Attrs().Get<int>("axis");
      axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
      std::vector<int> x_dims_array(max_dim);
      std::vector<int> y_dims_array(max_dim);
      std::vector<int> out_dims_array(max_dim);
      GetBroadcastDimsArrays(x_dims, y_dims, x_dims_array.data(),
                             y_dims_array.data(), out_dims_array.data(),
                             max_dim, axis);
      ctx->SetOutputDim("Out", framework::make_ddim(out_dims_array));
      // to do
      ctx->ShareLoD("X", /*->*/ "Out");
    }
G
gongweibao 已提交
91
  }
92 93

  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
94
      const framework::ExecutionContext &ctx) const override {
95
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
96 97

#ifdef PADDLE_WITH_MKLDNN
98 99 100 101 102 103 104
    // If broadcasting is needed, use native implementation
    auto CanMKLDNNElementwiseAddBeUsed = [&]() {
      return ctx.Input<Tensor>("X")->dims() == ctx.Input<Tensor>("Y")->dims();
    };

    if (platform::CanMKLDNNBeUsed(ctx) &&
        (ctx.Type() != "elementwise_add" || CanMKLDNNElementwiseAddBeUsed())) {
105 106 107 108 109 110 111
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
G
gongweibao 已提交
112 113
};

C
chengduo 已提交
114 115 116 117 118 119
class ElementwiseOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
120 121 122
  }
};

G
gongweibao 已提交
123 124
class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
125
  void Make() final {
126 127 128 129
    AddInputX();
    AddInputY();
    AddOpOutput();

G
gongweibao 已提交
130
    AddAttr<int>("axis",
131 132 133 134
                 "(int, default -1). If X.dimension != Y.dimension,"
                 "Y.dimension must be a subsequence of x.dimension. And axis "
                 "is the start dimension index "
                 "for broadcasting Y onto X. ")
G
gongweibao 已提交
135 136
        .SetDefault(-1)
        .EqualGreaterThan(-1);
137 138
    AddAttr<bool>("use_mkldnn", "(bool, default false). Used by MKLDNN.")
        .SetDefault(false);
139
    AddAttr<std::string>("x_data_format", "This parameter is no longer used.")
140
        .SetDefault("");
141
    AddAttr<std::string>("y_data_format", "This parameter is no longer used.")
142
        .SetDefault("");
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
    AddOpComment();
  }

 protected:
  virtual void AddInputX() {
    AddInput("X", "(Tensor), The first input tensor of elementwise op.");
  }
  virtual void AddInputY() {
    AddInput("Y", "(Tensor), The second input tensor of elementwise op.");
  }
  virtual void AddOpOutput() {
    AddOutput("Out",
              "N-dimension tensor. A location into which the result is stored. "
              "It's dimension "
              "equals with x");
  }
  virtual void AddOpComment() { AddComment(GetCommentExamples()); }

  virtual std::string GetOpFuntionality() const { return ""; }

  virtual std::string GetName() const = 0;
  virtual std::string GetEquation() const = 0;

  std::string GetCommentExamples() const {
    return string::Sprintf(R"DOC(
Elementwise %s Operator.

%s
K
kexinzhao 已提交
171 172 173

The equation is:

Y
Yu Yang 已提交
174
$$%s$$
K
kexinzhao 已提交
175

176
- $X$: a tensor of any dimension.
L
Luo Tao 已提交
177
- $Y$: a tensor whose dimensions must be less than or equal to the dimensions of $X$.
K
kexinzhao 已提交
178 179

There are two cases for this operator:
180

L
Luo Tao 已提交
181 182
1. The shape of $Y$ is the same with $X$.
2. The shape of $Y$ is a continuous subsequence of $X$.
K
kexinzhao 已提交
183 184

For case 2:
185

186 187
1. Broadcast $Y$ to match the shape of $X$, where $axis$ is the start dimension index
   for broadcasting $Y$ onto $X$.
L
Luo Tao 已提交
188
2. If $axis$ is -1 (default), $axis = rank(X) - rank(Y)$.
189
3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of
L
Luo Tao 已提交
190
   subsequence, such as shape(Y) = (2, 1) => (2).
K
kexinzhao 已提交
191

L
Luo Tao 已提交
192
For example:
193

G
gongweibao 已提交
194
  .. code-block:: text
G
gongweibao 已提交
195

196 197
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
L
Luo Tao 已提交
198
    shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
199 200
    shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
201
    shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
202

Y
Yu Yang 已提交
203
)DOC",
204
                           GetName(), GetOpFuntionality(), GetEquation());
G
gongweibao 已提交
205 206 207 208 209 210 211 212
  }
};

class ElementwiseOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

C
chengduo 已提交
213
  void InferShape(framework::InferShapeContext *ctx) const override {
214
    auto out_grad_name = framework::GradVarName("Out");
215 216 217
    PADDLE_ENFORCE_EQ(ctx->HasInput("Y"), true, "Input(Y) should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput(out_grad_name), true,
                      "Input(Out@GRAD) should not be null.");
Q
Qiao Longfei 已提交
218 219 220
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
221 222
      ctx->ShareDim("X", /*->*/ x_grad_name);
      ctx->ShareLoD("X", /*->*/ x_grad_name);
G
gongweibao 已提交
223
    }
Q
Qiao Longfei 已提交
224
    if (ctx->HasOutput(y_grad_name)) {
225 226
      ctx->ShareDim("Y", /*->*/ y_grad_name);
      ctx->ShareLoD("Y", /*->*/ y_grad_name);
G
gongweibao 已提交
227 228
    }
  }
229 230

  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
231
      const framework::ExecutionContext &ctx) const override {
232 233
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
234 235

#ifdef PADDLE_WITH_MKLDNN
236 237 238 239 240 241 242 243 244 245
    // If broadcasting is needed, use native implementation
    auto CanMKLDNNElementwiseAddGradBeUsed = [&]() {
      auto dx = ctx.Output<Tensor>(framework::GradVarName("X"));
      auto dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
      return (dx != nullptr && dy != nullptr && dx->dims() == dy->dims());
    };

    if (platform::CanMKLDNNBeUsed(ctx) &&
        (ctx.Type() != "elementwise_add_grad" ||
         CanMKLDNNElementwiseAddGradBeUsed())) {
246 247 248 249 250 251 252
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
G
gongweibao 已提交
253
};
254

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
class ElementwiseOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext *ctx) const override {
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->ShareDim("X", x_grad_name);
      ctx->ShareLoD("X", x_grad_name);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->ShareDim("Y", y_grad_name);
      ctx->ShareLoD("Y", y_grad_name);
    }
    if (ctx->HasOutput("DDOut")) {
      ctx->ShareDim("DOut", "DDOut");
      ctx->ShareLoD("DOut", "DDOut");
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
279
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DOut");
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306

#ifdef PADDLE_WITH_MKLDNN
    if (platform::CanMKLDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

class ElementwiseOpDoubleGradWithoutDXDY
    : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext *ctx) const override {
    if (ctx->HasOutput("DDOut")) {
      ctx->ShareDim("DOut", "DDOut");
      ctx->ShareLoD("DOut", "DDOut");
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
307 308 309 310
    framework::proto::VarType::Type input_data_type;
    if (ctx.HasInput("DDX") == false) {
      PADDLE_ENFORCE_EQ(ctx.HasInput("DDY"), true,
                        "Input(DDY) should not be null");
311
      input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DDY");
312 313 314
    } else if (ctx.HasInput("DDY") == false) {
      PADDLE_ENFORCE_EQ(ctx.HasInput("DDX"), true,
                        "Input(DDX) should not be null");
315
      input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DDX");
316
    } else {
317
      input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DDX");
318
    }
319 320 321 322 323 324 325 326 327 328 329 330

#ifdef PADDLE_WITH_MKLDNN
    if (platform::CanMKLDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

331 332 333
template <typename T>
class ElemwiseGradKernel : public framework::OpKernel<T> {
 public:
C
chengduo 已提交
334 335
  void Compute(const framework::ExecutionContext &context) const override {
    auto *dx =
336 337
        context.Output<framework::LoDTensor>(framework::GradVarName("X"));
    if (dx != nullptr) {
C
chengduo 已提交
338
      auto &dout =
339 340 341 342 343 344
          *context.Input<framework::LoDTensor>(framework::GradVarName("Out"));
      dx->set_lod(dout.lod());
    }
  }
};

345 346 347 348
DECLARE_INPLACE_OP_INFERER(ElementwiseOpInplace, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(ElementwiseGradOpInplace,
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
349
DECLARE_INPLACE_OP_INFERER(ElementwiseDoubleGradOpInplace, {"DDX", "DDOut"});
D
dzhwinter 已提交
350

351 352
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(ElementwiseGradNoBufVarsInference, "X",
                                      "Y");
353 354
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(ElementwiseDoubleGradNoBufVarsInference,
                                      "Y", "DOut");
S
sneaxiy 已提交
355

G
gongweibao 已提交
356 357
}  // namespace operators
}  // namespace paddle
H
hong 已提交
358 359 360 361 362 363 364 365
#define REGISTER_ELEMWISE_GRAD_MAKER(kernel_type, op_name)              \
  template <typename T>                                                 \
  class kernel_type##GradMaker                                          \
      : public paddle::framework::SingleGradOpMaker<T> {                \
   public:                                                              \
    using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker; \
                                                                        \
   protected:                                                           \
366
    void Apply(::paddle::framework::GradOpPtr<T> op) const override {   \
H
hong 已提交
367
      op->SetType(#kernel_type "_grad");                                \
368
      op->SetInput("X", this->Input("X"));                              \
H
hong 已提交
369 370 371 372 373 374 375 376 377
      op->SetInput("Y", this->Input("Y"));                              \
      op->SetInput(::paddle::framework::GradVarName("Out"),             \
                   this->OutputGrad("Out"));                            \
      op->SetAttrMap(this->Attrs());                                    \
      op->SetOutput(::paddle::framework::GradVarName("X"),              \
                    this->InputGrad("X"));                              \
      op->SetOutput(::paddle::framework::GradVarName("Y"),              \
                    this->InputGrad("Y"));                              \
    }                                                                   \
378 379
  }

380 381 382 383
#define REGISTER_ELEMWISE_EXPLICIT_OP_WITHOUT_GRAD(op_type, op_name)    \
  REGISTER_OPERATOR(op_type, ::paddle::operators::ElementwiseOp,        \
                    ::paddle::operators::Elementwise##op_name##OpMaker, \
                    ::paddle::operators::ElementwiseOpInferVarType,     \
H
hong 已提交
384 385
                    op_type##GradMaker<::paddle::framework::OpDesc>,    \
                    op_type##GradMaker<::paddle::imperative::OpBase>,   \
386
                    ::paddle::operators::ElementwiseOpInplace);