elementwise_op.h 14.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14 15

#pragma once
C
chengduo 已提交
16

17
#include <algorithm>  // for max
L
liuwei1031 已提交
18
#include <memory>
19
#include <string>
L
liuwei1031 已提交
20
#include <unordered_map>
21
#include <vector>
22
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
23 24
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
25
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
C
chengduo 已提交
26

27 28 29
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
G
gongweibao 已提交
30 31 32 33 34 35 36 37 38

namespace paddle {
namespace operators {

class ElementwiseOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  using Tensor = framework::Tensor;
C
chengduo 已提交
39 40

  void InferShape(framework::InferShapeContext *ctx) const override {
41 42 43 44 45 46
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      "Input(X) of elementwise op should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput("Y"), true,
                      "Input(Y) of elementwise op should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Output(Out) of elementwise op should not be null.");
Q
Qiao Longfei 已提交
47

C
chengduo 已提交
48 49 50
    PADDLE_ENFORCE(
        ctx->GetInputsVarType("Y").front() ==
            framework::proto::VarType::LOD_TENSOR,
C
chengduo 已提交
51 52 53 54
        "The input var's type should be LoDTensor, but the received is %s [%s]",
        ctx->GetInputsVarType("Y").front(), ctx->Inputs("Y").front());

    if (ctx->GetInputsVarType("X").front() ==
55
        framework::proto::VarType::SELECTED_ROWS) {
56 57 58 59 60 61 62 63 64 65
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Y").size(), 1u,
          "ShapeError: For elementwise_op, if X is Sparse(VarType.SELECTED_ROWS"
          "), Y must be scalar. But reveived the dimension of Y = %s",
          ctx->GetInputDim("Y").size());
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Y")[0], 1,
          "ShapeError: For elementwise_op, if X is Sparse(VarType.SELECTED_ROWS"
          "), Y must be scalar. But reveived the first dimension of Y = %s",
          ctx->GetInputDim("Y")[0]);
66 67
    } else if (ctx->GetInputsVarType("X").front() !=
               framework::proto::VarType::LOD_TENSOR) {
C
chengduo 已提交
68 69 70
      PADDLE_THROW("X's type[%s] is not supported by elementwise_op.",
                   ctx->GetInputsVarType("X").front());
    }
71

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    if (ctx->GetInputDim("X") == ctx->GetInputDim("Y")) {
      ctx->ShareDim("X", /*->*/ "Out");
      ctx->ShareLoD("X", /*->*/ "Out");
    } else {
      auto x_dims = ctx->GetInputDim("X");
      auto y_dims = ctx->GetInputDim("Y");
      int max_dim = std::max(x_dims.size(), y_dims.size());
      int axis = ctx->Attrs().Get<int>("axis");
      axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
      std::vector<int> x_dims_array(max_dim);
      std::vector<int> y_dims_array(max_dim);
      std::vector<int> out_dims_array(max_dim);
      GetBroadcastDimsArrays(x_dims, y_dims, x_dims_array.data(),
                             y_dims_array.data(), out_dims_array.data(),
                             max_dim, axis);
      ctx->SetOutputDim("Out", framework::make_ddim(out_dims_array));
      // to do
      ctx->ShareLoD("X", /*->*/ "Out");
    }
G
gongweibao 已提交
91
  }
92 93

  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
94
      const framework::ExecutionContext &ctx) const override {
95
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
96 97 98 99 100 101 102 103 104 105

#ifdef PADDLE_WITH_MKLDNN
    if (platform::CanMKLDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
G
gongweibao 已提交
106 107
};

C
chengduo 已提交
108 109 110 111 112 113
class ElementwiseOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
114 115 116
  }
};

G
gongweibao 已提交
117 118
class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
119
  void Make() final {
120 121 122 123
    AddInputX();
    AddInputY();
    AddOpOutput();

G
gongweibao 已提交
124
    AddAttr<int>("axis",
125 126 127 128
                 "(int, default -1). If X.dimension != Y.dimension,"
                 "Y.dimension must be a subsequence of x.dimension. And axis "
                 "is the start dimension index "
                 "for broadcasting Y onto X. ")
G
gongweibao 已提交
129 130
        .SetDefault(-1)
        .EqualGreaterThan(-1);
131 132
    AddAttr<bool>("use_mkldnn", "(bool, default false). Used by MKLDNN.")
        .SetDefault(false);
133
    AddAttr<std::string>("x_data_format", "This parameter is no longer used.")
134
        .SetDefault("");
135
    AddAttr<std::string>("y_data_format", "This parameter is no longer used.")
136
        .SetDefault("");
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    AddOpComment();
  }

 protected:
  virtual void AddInputX() {
    AddInput("X", "(Tensor), The first input tensor of elementwise op.");
  }
  virtual void AddInputY() {
    AddInput("Y", "(Tensor), The second input tensor of elementwise op.");
  }
  virtual void AddOpOutput() {
    AddOutput("Out",
              "N-dimension tensor. A location into which the result is stored. "
              "It's dimension "
              "equals with x");
  }
  virtual void AddOpComment() { AddComment(GetCommentExamples()); }

  virtual std::string GetOpFuntionality() const { return ""; }

  virtual std::string GetName() const = 0;
  virtual std::string GetEquation() const = 0;

  std::string GetCommentExamples() const {
    return string::Sprintf(R"DOC(
Elementwise %s Operator.

%s
K
kexinzhao 已提交
165 166 167

The equation is:

Y
Yu Yang 已提交
168
$$%s$$
K
kexinzhao 已提交
169

170
- $X$: a tensor of any dimension.
L
Luo Tao 已提交
171
- $Y$: a tensor whose dimensions must be less than or equal to the dimensions of $X$.
K
kexinzhao 已提交
172 173

There are two cases for this operator:
174

L
Luo Tao 已提交
175 176
1. The shape of $Y$ is the same with $X$.
2. The shape of $Y$ is a continuous subsequence of $X$.
K
kexinzhao 已提交
177 178

For case 2:
179

180 181
1. Broadcast $Y$ to match the shape of $X$, where $axis$ is the start dimension index
   for broadcasting $Y$ onto $X$.
L
Luo Tao 已提交
182
2. If $axis$ is -1 (default), $axis = rank(X) - rank(Y)$.
183
3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of
L
Luo Tao 已提交
184
   subsequence, such as shape(Y) = (2, 1) => (2).
K
kexinzhao 已提交
185

L
Luo Tao 已提交
186
For example:
187

G
gongweibao 已提交
188
  .. code-block:: text
G
gongweibao 已提交
189

190 191
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
L
Luo Tao 已提交
192
    shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
193 194
    shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
195
    shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
196

Y
Yu Yang 已提交
197
)DOC",
198
                           GetName(), GetOpFuntionality(), GetEquation());
G
gongweibao 已提交
199 200 201 202 203 204 205 206
  }
};

class ElementwiseOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

C
chengduo 已提交
207
  void InferShape(framework::InferShapeContext *ctx) const override {
208
    auto out_grad_name = framework::GradVarName("Out");
209 210 211
    PADDLE_ENFORCE_EQ(ctx->HasInput("Y"), true, "Input(Y) should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput(out_grad_name), true,
                      "Input(Out@GRAD) should not be null.");
Q
Qiao Longfei 已提交
212 213 214
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
215 216
      ctx->ShareDim("X", /*->*/ x_grad_name);
      ctx->ShareLoD("X", /*->*/ x_grad_name);
G
gongweibao 已提交
217
    }
Q
Qiao Longfei 已提交
218
    if (ctx->HasOutput(y_grad_name)) {
219 220
      ctx->ShareDim("Y", /*->*/ y_grad_name);
      ctx->ShareLoD("Y", /*->*/ y_grad_name);
G
gongweibao 已提交
221 222
    }
  }
223 224

  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
225
      const framework::ExecutionContext &ctx) const override {
226 227
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
228 229 230 231 232 233 234 235 236 237

#ifdef PADDLE_WITH_MKLDNN
    if (platform::CanMKLDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
G
gongweibao 已提交
238
};
239

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
class ElementwiseOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext *ctx) const override {
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->ShareDim("X", x_grad_name);
      ctx->ShareLoD("X", x_grad_name);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->ShareDim("Y", y_grad_name);
      ctx->ShareLoD("Y", y_grad_name);
    }
    if (ctx->HasOutput("DDOut")) {
      ctx->ShareDim("DOut", "DDOut");
      ctx->ShareLoD("DOut", "DDOut");
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
264
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DOut");
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291

#ifdef PADDLE_WITH_MKLDNN
    if (platform::CanMKLDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

class ElementwiseOpDoubleGradWithoutDXDY
    : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext *ctx) const override {
    if (ctx->HasOutput("DDOut")) {
      ctx->ShareDim("DOut", "DDOut");
      ctx->ShareLoD("DOut", "DDOut");
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
292 293 294 295
    framework::proto::VarType::Type input_data_type;
    if (ctx.HasInput("DDX") == false) {
      PADDLE_ENFORCE_EQ(ctx.HasInput("DDY"), true,
                        "Input(DDY) should not be null");
296
      input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DDY");
297 298 299
    } else if (ctx.HasInput("DDY") == false) {
      PADDLE_ENFORCE_EQ(ctx.HasInput("DDX"), true,
                        "Input(DDX) should not be null");
300
      input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DDX");
301
    } else {
302
      input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DDX");
303
    }
304 305 306 307 308 309 310 311 312 313 314 315

#ifdef PADDLE_WITH_MKLDNN
    if (platform::CanMKLDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

316 317 318
template <typename T>
class ElemwiseGradKernel : public framework::OpKernel<T> {
 public:
C
chengduo 已提交
319 320
  void Compute(const framework::ExecutionContext &context) const override {
    auto *dx =
321 322
        context.Output<framework::LoDTensor>(framework::GradVarName("X"));
    if (dx != nullptr) {
C
chengduo 已提交
323
      auto &dout =
324 325 326 327 328 329
          *context.Input<framework::LoDTensor>(framework::GradVarName("Out"));
      dx->set_lod(dout.lod());
    }
  }
};

330 331 332 333
DECLARE_INPLACE_OP_INFERER(ElementwiseOpInplace, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(ElementwiseGradOpInplace,
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
334
DECLARE_INPLACE_OP_INFERER(ElementwiseDoubleGradOpInplace, {"DDX", "DDOut"});
D
dzhwinter 已提交
335

336 337
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(ElementwiseGradNoBufVarsInference, "X",
                                      "Y");
338 339
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(ElementwiseDoubleGradNoBufVarsInference,
                                      "Y", "DOut");
S
sneaxiy 已提交
340

G
gongweibao 已提交
341 342
}  // namespace operators
}  // namespace paddle
H
hong 已提交
343 344 345 346 347 348 349 350 351 352 353
#define REGISTER_ELEMWISE_GRAD_MAKER(kernel_type, op_name)              \
  template <typename T>                                                 \
  class kernel_type##GradMaker                                          \
      : public paddle::framework::SingleGradOpMaker<T> {                \
   public:                                                              \
    using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker; \
                                                                        \
   protected:                                                           \
    std::unique_ptr<T> Apply() const override {                         \
      auto *op = new T();                                               \
      op->SetType(#kernel_type "_grad");                                \
354
      op->SetInput("X", this->Input("X"));                              \
H
hong 已提交
355 356 357 358 359 360 361 362 363 364
      op->SetInput("Y", this->Input("Y"));                              \
      op->SetInput(::paddle::framework::GradVarName("Out"),             \
                   this->OutputGrad("Out"));                            \
      op->SetAttrMap(this->Attrs());                                    \
      op->SetOutput(::paddle::framework::GradVarName("X"),              \
                    this->InputGrad("X"));                              \
      op->SetOutput(::paddle::framework::GradVarName("Y"),              \
                    this->InputGrad("Y"));                              \
      return std::unique_ptr<T>(op);                                    \
    }                                                                   \
365 366
  }

367 368 369 370
#define REGISTER_ELEMWISE_EXPLICIT_OP_WITHOUT_GRAD(op_type, op_name)    \
  REGISTER_OPERATOR(op_type, ::paddle::operators::ElementwiseOp,        \
                    ::paddle::operators::Elementwise##op_name##OpMaker, \
                    ::paddle::operators::ElementwiseOpInferVarType,     \
H
hong 已提交
371 372
                    op_type##GradMaker<::paddle::framework::OpDesc>,    \
                    op_type##GradMaker<::paddle::imperative::OpBase>,   \
373
                    ::paddle::operators::ElementwiseOpInplace);