param_attr.py 10.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
F
fengjiayi 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
F
fengjiayi 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
F
update  
fengjiayi 已提交
14

15 16
from __future__ import print_function

17 18
import six

19 20
from .initializer import Initializer, Xavier, Constant
from .regularizer import WeightDecayRegularizer
Y
Yu Yang 已提交
21

22 23 24 25
__all__ = [
    'ParamAttr',
    'WeightNormParamAttr',
]
Y
Yu Yang 已提交
26

Y
Yu Yang 已提交
27 28

class ParamAttr(object):
C
chengduoZH 已提交
29
    """
Z
Zeng Jinle 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
    Create a object to represent the attribute of parameter. The attributes are:
    name, initializer, learning rate, regularizer, trainable, gradient clip,
    and model average.

    Parameters:
        name (str, optional): The parameter's name. Default None, meaning that the name
                would be created automatically.
        initializer (Initializer, optional): The method to initial this parameter. Default
                None, meaning that the weight parameter is initialized by Xavier initializer,
                and the bias parameter is initialized by 0.
        learning_rate (float): The parameter's learning rate. The learning rate when
                optimize is the global learning rates times the parameter's learning rate times
                the factor of learning rate scheduler. Default 1.0.
        regularizer (WeightDecayRegularizer, optional): Regularization factor. Default None, meaning
                there is no regularization.
        trainable (bool): Whether this parameter is trainable. Default True.
        gradient_clip (BaseGradientClipAttr, optional): The method to clip this parameter's
                gradient. Default None, meaning that there is no gradient clip.
        do_model_average (bool): Whether this parameter should do model average
                when model average is enabled. Default False.
C
chengduoZH 已提交
50 51 52 53

    Examples:
        .. code-block:: python

Z
Zeng Jinle 已提交
54 55
            import paddle.fluid as fluid

C
chengduoZH 已提交
56 57
            w_param_attrs = fluid.ParamAttr(name="fc_weight",
                                            learning_rate=0.5,
T
Tink_Y 已提交
58
                                            regularizer=fluid.regularizer.L2Decay(1.0),
C
chengduoZH 已提交
59
                                            trainable=True)
Z
Zeng Jinle 已提交
60
            print(w_param_attrs.name) # "fc_weight"
61
            x = fluid.data(name='X', shape=[None, 1], dtype='float32')
C
chengduoZH 已提交
62 63 64
            y_predict = fluid.layers.fc(input=x, size=10, param_attr=w_param_attrs)
    """

Y
Yu Yang 已提交
65 66 67 68 69
    def __init__(self,
                 name=None,
                 initializer=None,
                 learning_rate=1.0,
                 regularizer=None,
Y
Yu Yang 已提交
70
                 trainable=True,
W
wanghaoshuang 已提交
71
                 gradient_clip=None,
72
                 do_model_average=True):
Y
Yu Yang 已提交
73
        self.name = name
H
hong 已提交
74 75 76
        if isinstance(self.name, six.string_types) and self.name == "":
            raise ValueError("name of ParamAttr can not be empty str")

Y
Yu Yang 已提交
77 78 79 80
        self.initializer = initializer
        self.learning_rate = learning_rate
        self.regularizer = regularizer
        self.trainable = trainable
F
fengjiayi 已提交
81
        self.gradient_clip = gradient_clip
82
        self.do_model_average = do_model_average
Y
Yu Yang 已提交
83

Y
yuyang18 已提交
84
    def _set_default_initializer(self, initializer):
C
chengduoZH 已提交
85 86 87
        """
        Set the default initializer, the initializer should be Constant,
        Uniform, Normal, Xavier, MSRA.
C
chengduoZH 已提交
88 89 90 91 92 93

        Args:
            initializer(Initializer): the initializer to set.

        Returns:
            None
C
chengduoZH 已提交
94
        """
Y
Yu Yang 已提交
95 96 97 98 99 100 101 102 103 104
        if initializer is None:
            if self.initializer is None:
                raise ValueError("ParamAttr.initializer is not set")
            return

        if self.initializer is not None:
            return

        self.initializer = initializer

Y
yuyang18 已提交
105
    def _set_default_param_initializer(self):
C
chengduoZH 已提交
106 107
        """
        Set the default initializer for the parameter with Xavier.
C
chengduoZH 已提交
108 109 110 111 112 113

        Args:
            None.

        Returns:
            None.
C
chengduoZH 已提交
114
        """
Y
yuyang18 已提交
115
        self._set_default_initializer(Xavier())
Y
Yu Yang 已提交
116

Y
yuyang18 已提交
117
    def _set_default_bias_initializer(self):
C
chengduoZH 已提交
118 119
        """
        Set the default initializer for the bias with Constant(0.0).
C
chengduoZH 已提交
120 121 122 123 124 125

        Args:
            None.

        Returns:
            None.
C
chengduoZH 已提交
126
        """
Y
yuyang18 已提交
127
        self._set_default_initializer(Constant(0.0))
Y
Yu Yang 已提交
128 129

    @staticmethod
Y
yuyang18 已提交
130
    def _to_attr(arg):
C
chengduoZH 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144
        """
        Create ParamAttr[s].

        Args:
            arg: Arguments to initialize ParamAttr[s]. arg's type can be
                str, Initializer, float, WeightDecayRegularizer, BaseGradientClipAttr,
                bool, ParamAttr, or a list of above type.

        Returns:
            ParamAttr[s]: ParamAttr[s] initialized with arg.

        Raises:
            arg can not initialize a ParamAttr.
        """
Y
Yu Yang 已提交
145 146
        if arg is None:
            return ParamAttr()
147
        elif isinstance(arg, list) or isinstance(arg, tuple):
Y
yuyang18 已提交
148
            return [ParamAttr._to_attr(a) for a in arg]
Y
Yu Yang 已提交
149 150
        elif isinstance(arg, ParamAttr):
            return arg
151
        elif isinstance(arg, six.string_types):
Y
Yu Yang 已提交
152 153 154 155 156 157
            return ParamAttr(name=arg)
        elif isinstance(arg, Initializer):
            return ParamAttr(initializer=arg)
        elif isinstance(arg, WeightDecayRegularizer):
            return ParamAttr(regularizer=arg)
        elif isinstance(arg, bool):
Y
yuyang18 已提交
158
            return ParamAttr._to_attr(None) if arg else False
Y
Yu Yang 已提交
159 160 161
        else:
            raise TypeError("{0} cast to ParamAttr".format(type(arg)))

Y
yuyang18 已提交
162
    def _to_kwargs(self, with_initializer=False):
C
chengduoZH 已提交
163 164 165 166 167 168 169 170 171
        """
        Returns the attributes of this parameter.

        Args:
            with_initializer(bool): Whether to add initializer attr.

        Returns:
            Parameter attributes(map): The attributes of this parameter.
        """
Y
Yu Yang 已提交
172 173
        kwargs = {
            'name': self.name,
G
guosheng 已提交
174 175 176
            'optimize_attr': {
                'learning_rate': self.learning_rate
            },
Y
Yu Yang 已提交
177
            'regularizer': self.regularizer,
Y
Yu Yang 已提交
178
            'trainable': self.trainable,
W
wanghaoshuang 已提交
179
            'gradient_clip_attr': self.gradient_clip,
180
            'do_model_average': self.do_model_average
Y
Yu Yang 已提交
181 182 183 184
        }
        if with_initializer:
            kwargs['initializer'] = self.initializer
        return kwargs
G
guosheng 已提交
185 186 187 188


class WeightNormParamAttr(ParamAttr):
    """
189
    Parameter of weight Norm. Weight Norm is a reparameterization of the weight vectors
190
    in a neural network that decouples the magnitude of those weight vectors from
C
chengduoZH 已提交
191 192 193 194 195 196
    their direction. Weight Norm has been implemented as discussed in this
    paper: `Weight Normalization: A Simple Reparameterization to Accelerate
    Training of Deep Neural Networks
    <https://arxiv.org/pdf/1602.07868.pdf>`_.

    Args:
197 198
        dim(int): Dimension over which to compute the norm. Dim is a non-negative
            number which is less than the rank of weight Tensor. For Example, dim can
T
tianshuo78520a 已提交
199
            be chosen from 0, 1, 2, 3 for convolution whose weight shape is [cout, cin, kh, kw]
200 201 202 203 204 205 206 207 208
            and rank is 4. Default None, meaning that all elements will be normalized.
        name(str, optional): The parameter's name. Default None, meaning that the name would
            be created automatically. Please refer to :ref:`api_guide_Name` for more details.
        initializer(Initializer): The method to initialize this parameter, such as
            ``initializer = fluid.initializer.ConstantInitializer(1.0)``. Default None,
            meaning that the weight parameter is initialized by Xavier initializer, and
            the bias parameter is initialized by 0.
        learning_rate(float32): The parameter's learning rate when
            optimizer is :math:`global\_lr * parameter\_lr * scheduler\_factor`.
X
Xin Pan 已提交
209
            Default 1.0.
210 211 212 213 214 215 216 217
        regularizer(WeightDecayRegularizer): Regularization factor, such as
            ``regularizer = fluid.regularizer.L2DecayRegularizer(regularization_coeff=0.1)``.
            Default None, meaning that there is no regularization.
        trainable(bool, optional): Whether this parameter is trainable. Default True.
        gradient_clip: The method to clip this parameter's gradient, such as
            ``gradient_clip = fluid.clip.GradientClipByNorm(clip_norm=2.0))`` .
            Default None, meaning that there is no gradient clip.
        do_model_average(bool, optional): Whether this parameter should do model average.
X
Xin Pan 已提交
218
            Default False.
C
chengduoZH 已提交
219 220 221

    Examples:
        .. code-block:: python
222 223
            
            import paddle.fluid as fluid
C
chengduoZH 已提交
224 225 226
            data = fluid.layers.data(name="data", shape=[3, 32, 32], dtype="float32")
            fc = fluid.layers.fc(input=data,
                                 size=1000,
227
                                 param_attr=fluid.WeightNormParamAttr(
228 229 230 231 232 233 234 235
                                          dim=None,
                                          name='weight_norm_param',
                                          initializer=fluid.initializer.ConstantInitializer(1.0),
                                          learning_rate=1.0,
                                          regularizer=fluid.regularizer.L2DecayRegularizer(regularization_coeff=0.1),
                                          trainable=True,
                                          gradient_clip=fluid.clip.GradientClipByNorm(clip_norm=2.0),
                                          do_model_average=False))
C
chengduoZH 已提交
236

G
guosheng 已提交
237 238 239
    """
    # List to record the parameters reparameterized by weight normalization.
    # If these parameters are treated as Variable rather than Parameter,
240
    # it can be used to discriminate these parameters and help to serialize
G
guosheng 已提交
241 242 243
    # these paramters for inference.
    params_with_weight_norm = []

X
Xin Pan 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    def __init__(self,
                 dim=None,
                 name=None,
                 initializer=None,
                 learning_rate=1.0,
                 regularizer=None,
                 trainable=True,
                 gradient_clip=None,
                 do_model_average=False):
        super(WeightNormParamAttr, self).__init__(
            name=name,
            initializer=initializer,
            learning_rate=learning_rate,
            regularizer=regularizer,
            trainable=trainable,
            gradient_clip=gradient_clip,
            do_model_average=do_model_average)
G
guosheng 已提交
261
        self.dim = dim