cross_entropy_op.cc 7.2 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/cross_entropy_op.h"

namespace paddle {
namespace operators {

20
class CrossEntropyOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
21 22 23
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
25 26 27
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("Y"), "Output(Y) should be not null.");
28

Q
Qiao Longfei 已提交
29 30
    auto x_dims = ctx->GetInputDim("X");
    auto label_dims = ctx->GetInputDim("Label");
C
caoying03 已提交
31 32 33
    PADDLE_ENFORCE_EQ(x_dims.size(), 2UL, "Input(X)'s rank should be 2.");
    PADDLE_ENFORCE_EQ(label_dims.size(), 2UL,
                      "Input(Label)'s rank should be 2.");
Q
Qiao Longfei 已提交
34
    PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0],
C
caoying03 已提交
35
                      "The 1st dimension of Input(X) and Input(Label) should "
36
                      "be equal.");
37
    if (ctx->Attrs().Get<bool>("soft_label")) {
Q
Qiao Longfei 已提交
38
      PADDLE_ENFORCE_EQ(x_dims[1], label_dims[1],
39
                        "If Attr(soft_label) == true, the 2nd dimension of "
C
caoying03 已提交
40
                        "Input(X) and Input(Label) should be equal.");
41
    } else {
C
caoying03 已提交
42
      PADDLE_ENFORCE_EQ(label_dims[1], 1UL,
C
caoying03 已提交
43
                        "If Attr(softLabel) == false, the 2nd dimension of "
C
caoying03 已提交
44
                        "Input(Label) should be 1.");
45
    }
46

Q
Qiao Longfei 已提交
47 48
    ctx->SetOutputDim("Y", {x_dims[0], 1});
    ctx->ShareLoD("X", /*->*/ "Y");
Q
Qiao Longfei 已提交
49
  }
Y
Yu Yang 已提交
50

51
 protected:
C
Cao Ying 已提交
52
  // Explicitly set that the data type of computation kernel of cross_entropy
C
caoying03 已提交
53
  // is determined by its input "X".
Y
Yu Yang 已提交
54 55 56 57
  framework::DataType IndicateDataType(
      const framework::ExecutionContext& ctx) const override {
    return framework::ToDataType(ctx.Input<Tensor>("X")->type());
  }
Q
Qiao Longfei 已提交
58 59
};

60
class CrossEntropyGradientOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
61 62 63
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

64
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
65 66 67 68 69 70
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
                   "Input(Y@GRAD) shoudl be not null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "Output(X@GRAD) should be not null.");
71

Q
Qiao Longfei 已提交
72 73 74 75 76 77 78
    auto x_dims = ctx->GetInputDim("X");
    auto label_dims = ctx->GetInputDim("Label");
    auto dy_dims = ctx->GetInputDim(framework::GradVarName("Y"));
    PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank should be 2.");
    PADDLE_ENFORCE_EQ(dy_dims.size(), 2, "Input(Y@Grad)'s rank should be 2.");
    PADDLE_ENFORCE_EQ(label_dims.size(), 2, "Input(Label)'s rank should be 2.");
    PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0],
C
caoying03 已提交
79
                      "The 1st dimension of Input(X) and Input(Label) should "
80
                      "be equal.");
Q
Qiao Longfei 已提交
81
    PADDLE_ENFORCE_EQ(x_dims[0], dy_dims[0],
C
caoying03 已提交
82
                      "The 1st dimension of Input(X) and Input(Y@Grad) should "
83
                      "be equal.");
Q
Qiao Longfei 已提交
84
    PADDLE_ENFORCE_EQ(dy_dims[1], 1,
C
caoying03 已提交
85
                      "The 2nd dimension of Input(Y@Grad) should be 1.");
86
    if (ctx->Attrs().Get<bool>("soft_label")) {
Q
Qiao Longfei 已提交
87
      PADDLE_ENFORCE_EQ(x_dims[1], label_dims[1],
88
                        "When Attr(soft_label) == true, the 2nd dimension of "
C
caoying03 已提交
89
                        "Input(X) and Input(Label) should be equal.");
90
    } else {
Q
Qiao Longfei 已提交
91
      PADDLE_ENFORCE_EQ(label_dims[1], 1,
92
                        "When Attr(soft_label) == false, the 2nd dimension of "
C
caoying03 已提交
93
                        "Input(Label) should be 1.");
94
    }
Q
Qiao Longfei 已提交
95
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
Y
Yan Chunwei 已提交
96
  }
Y
Yu Yang 已提交
97

98
 protected:
C
Cao Ying 已提交
99 100
  // Explicitly set that the data type of computation kernel of cross_entropy
  // is determined by its input "X".
Y
Yu Yang 已提交
101 102 103 104
  framework::DataType IndicateDataType(
      const framework::ExecutionContext& ctx) const override {
    return framework::ToDataType(ctx.Input<Tensor>("X")->type());
  }
Y
Yan Chunwei 已提交
105 106
};

107
class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
108
 public:
Q
Qiao Longfei 已提交
109 110
  CrossEntropyOpMaker(framework::OpProto* proto,
                      framework::OpAttrChecker* op_checker)
111
      : OpProtoAndCheckerMaker(proto, op_checker) {
C
caoying03 已提交
112 113 114 115 116
    AddInput("X",
             "(Tensor, default Tensor<float>), a 2-D tensor with shape N x D, "
             "where N is the batch size and D is the number of classes. "
             "This input is a probability computed by the previous operator, "
             "which is almost always the result of a softmax operator.");
C
caoying03 已提交
117 118 119 120
    AddInput(
        "Label",
        "(Tensor, default Tensor<int>), the ground truth which is "
        "a 2-D tensor. "
K
Kexin Zhao 已提交
121
        "When soft_label is set to false, Label is a Tensor<int> with shape "
C
caoying03 已提交
122
        "[N x 1]. "
K
Kexin Zhao 已提交
123
        "When soft_label is set to true, Label is a Tensor<float/double> "
C
caoying03 已提交
124
        "with shape [N x K].");
C
caoying03 已提交
125
    AddOutput("Y",
C
caoying03 已提交
126
              "(Tensor, default Tensor<float>), a 2-D tensor "
C
caoying03 已提交
127 128
              "with shape [N x 1]. The cross entropy loss.");
    AddAttr<bool>(
129
        "soft_label",
C
caoying03 已提交
130 131
        "(bool, default false), a flag to indicate whether to interpretate "
        "the given labels as soft labels.")
132
        .SetDefault(false);
Q
Qiao Longfei 已提交
133
    AddComment(R"DOC(
134
CrossEntropy Operator.
Q
Qiao Longfei 已提交
135

136 137 138
It supports both standard cross-entropy and soft-label cross-entropy loss
computation.
1) One-hot cross-entropy:
139
    soft_label = false, Label[i, 0] indicates the class index for sample i:
140

K
Kexin Zhao 已提交
141
                $Y[i] = -\log(X[i, Label[i]])$
Q
Qiao Longfei 已提交
142

143
2) Soft-label cross-entropy:
144
    soft_label = true, Label[i, j] indicates the soft label of class j
145
    for sample i:
146

K
Kexin Zhao 已提交
147
                $Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}$
148

149
   Please make sure that in this case the summuation of each row of Label
150 151 152 153 154 155
   equals one.

3) One-hot cross-entropy with vecterized Input(Label):
     As a special case of 2), when each row of Input(Label) has only one
     non-zero element (equals 1), soft-label cross-entropy degenerates to a
     one-hot cross-entropy with one-hot label representation.
D
dangqingqing 已提交
156

K
Kexin Zhao 已提交
157 158 159
Both the input X and Label can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input X.

Q
Qiao Longfei 已提交
160 161 162 163 164 165
)DOC");
  }
};
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
166
namespace ops = paddle::operators;
167 168
REGISTER_OP(cross_entropy, ops::CrossEntropyOp, ops::CrossEntropyOpMaker,
            cross_entropy_grad, ops::CrossEntropyGradientOp);
169 170
REGISTER_OP_CPU_KERNEL(cross_entropy, ops::CrossEntropyOpKernel<float>,
                       ops::CrossEntropyOpKernel<double>);
171
REGISTER_OP_CPU_KERNEL(cross_entropy_grad,
172 173
                       ops::CrossEntropyGradientOpKernel<float>,
                       ops::CrossEntropyGradientOpKernel<double>);